
Lab 10
Demo Points (50 Marks)
Stories 14 – 24 (5 Marks each)

• JUnit Test (3 Marks)

• LibraryInOut method (2 Marks)

This Week
This week you will refactor your input/output class so that only the streams are in the class. The read 
and print functions for the objects are contained in the objects. The objects retrieve the streams from 
the I/O class. This is a better design because the LibraryInputOutput is less coupled to the rest of the 
classes. The I/O class does not need to know the structure of the classes that will be printed. Instead, 
each class will print itself using the streams managed by the I/O class.

The refactored classes will follow the UML diagram below. Notice that the print and read functions 
have been moved 
to the Friend, Item 
and Loan classes.

Notice that the 
function can now 
be named print() 
and read() for each 
of the classes. The 
printList() function 
has been moved to 
the MyLibrary 
class. It takes an 
ArrayList as a 
parameter, then 
prints the elements 
in that list. It can 
call the print 
function on each of
the elements of the 

1Illustration 1: Refactored Library



list counting on the object to print itself correctly.

Printing and Reading Item and Friend
Printing an Item or a Friend is relatively easy: one simply formats the output to the stream that is 
passed in. For example, here is a test for printing an Item.

Figure 1: testPrintItem() JUnit test

As you can see, the print() function on an Item object simply prints out the description of the item. The 
test for reading is similar.

Figure 2: testReadItem JUnit test

To read in an Item object, you simply read the description. The read method will return an object 
created from the description that was read. Because the read method returns an object, it should be a 
static method: that is it is called on the class itself to create a new Item rather than being called on a 
particular object.

The print() and read() functions for a Friend will be a little more difficult because you need to read 
multiple fields to make a Friend.

Printing and Reading Loan
Printing a Loan is simple once you can print an Item and a Friend. You simply format the PrintStream 
to print the Friend, then the string “borrowed”, followed by the Item the Friend borrowed.

However, reading a Loan requires a bit of refactoring. When you read a Loan, you do not want to create
a new Friend and a new Item when you create the Loan. Instead, you want to include a Friend from the 
friend's list and an Item from the items list. You will want to find the Friend in the MyLibrary friends 
and the Item in the MyLibrary items. However, you do not want to couple the MyLibrary class to the 
Loan class.

 unique ID for each Friend and Item, then implement methods in MyLibrary called findFriend(String 
id) and findItem(string id). Then you can either store the two IDs in the Loan and pass in MyLibrary to 

2



print. The print(MyLibrary ml) method will call findFriend() on the Loan's friendID and findItem on 
the Loan's itemID. Or you can store pass MyLibrary to the read() method can find the item and friend 
to store in the method. The second option is better because it ensures that there is a Friend and an Item 
to participate in the loan when the loan is created.Printing and reading a Loan is simple once you can 
read an print an Item and a Friend. That's why the backlog has you finish the print() and read() for the 
Item and Friend before you do the print() and read() for the Loan.

Hint: if you define a toString() function for a Loan, it makes testing easier. Here is my test for reading a
Loan. You can also use toString() for the print() function.

Next Week's Demo Points (30 marks)
Stories 24-30 (5 Marks Each)

• JUnit test (2 Marks)

• Implementation (3 Marks)

3


	Demo Points (50 Marks)
	This Week
	Printing and Reading Item and Friend
	Printing and Reading Loan
	Next Week's Demo Points (30 marks)


