Object Oriented Programming

Week 10 Part 3
Multi-threading: Inter-thread Communication

Week 10



Lecture

e Inter-thread Communication

Week 10



Inter-thread Communication

Week 10



Synchronization Problem

So far the threads have simply waited for either
a second or half a second before waking.

Often, threads need restart when events
happen

This can be done by polling a shared variable

— Polling 1s continually checking the value of a
variable. A thread sleeps for a while, checks the
value, and continue when the value is right

Guarded blocks make polling efficient

Week 10



Polling

public void polling() {

Loops forever until a Thread sets wait to False == while (SimpleThreads.wait) {}

System.out.println{"Finished waiting");

}
e Polling Is inefficient
— It will run continuously through the threads time slot.

— It is only preempted when it has used the entire slot
doing nothing

Week 10 5



Java Inter-thread Communication

e Three methods on Object
— vold wait ()

e Halts execution (i.e. permanently blocked)
e Throws InterruptedException

— volid notify ()

e Sends an interrupt to a Thread waiting on the Object's
monitor

— vold notifvyAll ()

 Send an interrupt to all Threads waiting on the Object's
monitor

Week 10



Guarded Block

boolean wait;

public void guarded() {
while (wait) {
try {
wait();
} catch (InterruptedException e) {}

|

wait = true;
System.out.println{"Finished waiting");

wait = false;
notify();

e

e Guarded blocks are more efficient
e |t does not run until restarted by an interrupt

Week 10 7



Using Guarded Blocks

e Let's modify the program so that thread 1 and
thread 2 take turns.

e To do this we will use a Guarded Block

— The guarded block will surround the sharedVar in
SimpleThreads

— If it was the last updater, it blocks waiting for an
Interrupt

— |f it was not the last updater, it updates the variable,
and puts its name In as the last updater.

Week 10



Example: SimpleThreads

ublic static synchronized void incrementAndPrint{int 1) {
while (lastUpdater.equals{Thread.currentThread().getName(}}) {
try {
printMessage(Thread. currentThread().getName()
+ " waiting");
SimpleThreads.class.wait{);
} catch (InterruptedException e) {}

}

sharedVar = sharedVar + 1;

printMessage(String. format("loop %¥d: sharedVar = %d",
1, sharedVar));

lastlUpdater = Thread. currentThread().getName();

SimpleThreads.class.notify();

Week 10 9



Example: Output

main, running: 5 ms, Thread 1 started
main, running: 9 ms, Thread 2 started

Thread 2, running:

Thread 1, running:
Thread 2, running:
Thread 2, running:
Thread 1, running:
Thread 2, running:
Thread 2, running:
Thread 1, running:
Thread 2, running:

Thread 1, running:

511 ms, loop @: sharedVar = 1

18849
1817
1523
2011
2812
2517
3812
3813
4818

main, running: 4818 ms,

Week 10

ms, loop @: sharedVar = ﬂ
ms, loop 1: sharedVar = 3

ms, Thread 2 waiting
ms, loop 1: sharedVar
ms, loop Z2: sharedVar
ms, Thread 2 waiting
ms, loop 2: sharedVar
ms, loop 3: sharedVar
ms, loop 3: sharedVar
Ending main()

4
&

b

10



Week's Lesson

Concurrency and threads
Starting threads
Synchronization

Inter thread communication

Week 10

11



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

