
Week 10 1

Object Oriented Programming

Week 10 Part 2
Multi-threading: Synchronizing Threads



Week 10 2

Lecture

● Race Conditions

● Synchronization

● Method Synchronization

● Locks

● Statement Synchronization

● Deadlock



Week 10 3

Race Conditions



Week 10 4

The Problem: Race Conditions

● A Race Condition occurs when one thread overwrites the result of
a second thread stored in a shared variable while the first thread
was sleeping. I.E.
1)A thread is preempted between the time it reads a value and the time it

writes the variable

2)The second thread updates the variable while the first thread is
preempted, overwriting the value

3)The second thread's update is lost.

● It is called a race condition because the two threads race to see
which one updates the variable

● Race conditions are extremely hard to debug because they occur
sporadically.



Week 10 5

Race Condition Example

● Thread 1 read x

● Thread 1 preempted

● Thread 2 read x

● Thread 2 add x + 1

● Thread 2 write x

● Thread 1 restarts

● Thread 1 add x + 1

● Thread 1 write x

● X = 1

● X = 1

● X = 1

● X = 1

● X = 2

● X = 2 (Thread 1 has 1)

● X = 2

● X = 2 (should be 3)



Week 10 6

RC Example Discussion

● When Thread 1 is preempted, the value of x is
1

● When Thread 1 restarts, it still thinks the value
of x is 1 even though Thread 2 has changed it
to 2

● Thread 1, not knowing that Thread 2 has run,
updates the value writing over the value that
Thread 2 wrote



Week 10 7

Race Condition: SimpleThreads

Shared variable: sharedVar



Week 10 8

Race Condition: RunnableThread

Make calculation using Shared variable

Enter blocked state by sleeping

Make calculation using shared variable

Update the shared variable



Week 10 9

Race Condition: Expectations

● Each thread runs updates the shared variable
four times adding one each time

● There are two threads running

● We would expect the value of variable to be 8
(2 * 4) when the program terminates



Week 10 10

Race Condition: Output

Thread 2 updates sharedVar
Thread 1 overwrites sharedVar

Final value of sharedVar is 4



Week 10 11

Synchronization

● Synchronization allows threads to use the same
variables

● Threads signal to each other using a
semaphore or monitor
– A monitor is an object that locks a sequence of code

so only one thread can use it at a time
● Only one thread at a time can run that code

– If another thread tries to enter a monitor it is blocked



Week 10 12

Synchronization



Week 10 13

Java Synchronization

● Java provides ways to synchronize threads
– Synchronized methods

– Synchronized statements



Week 10 14

Synchronized Methods



Week 10 15

Synchronized Methods

● Synchronized methods allow only one thread to
execute a method at a time

● If a second thread tries to execute the method,
it is blocked until the first method finishes.

● Synchronized methods are declared in java
using the keyword synchronized to the
declaration of the method



Week 10 16

Example: Synchronized Method

● First, notices that we have a design error in our
SimpleThreads class
– The variable sharedVar is declared to be public

giving the SharedThreads class no control over its
access

– We will fix that by adding the increment method

● We can then make that method synchronized



Week 10 17

Synchronized : SimpleThreads

Make sharedVar private

Access provided by sharedIncrement

Getter need not be synchronized

The getter need not be synchronized, because we only risk overwriting another
thread's work if we write to the variable. Reading is safe.



Week 10 18

Synchronized: RunnableThread

Enter blocked state by sleeping

Update using SimpleThreads method

Get the value using SimpleThread method



Week 10 19

Synchronized: Output

Thread 2 prints after Thread 2 updates
Thread 1 prints after Thread 2 updates

Thread 1 prints after Thread 2 updates

Final value is correct

● The anomaly is now cause by the distance in time between the update and the
print.

● We can fix this by synchronizing both the increment and the print



Week 10 20

Synchronized incrementAndPrint:
SimpleThreads

Need to pass in loop counter

Print message in synchronize method

Updating and printing now occur atomically



Week 10 21

Synchronized incrementAndPrint:
RunnableThread

Call incrementAndPrint with loop variable



Week 10 22

Synchronized incrementAndPrint:
Output

● The anomaly is fixed



Week 10 23

Locks



Week 10 24

Locks

● Locks are objects that insure that only one
thread uses a method

● Each object and class has an intrinsic lock 
associated with it
– Methods declared to be static used the class's lock

– Non-static methods use the objects lock

● To use the object or classes lock, call the the
synchronized() method.



Week 10 25

Synchronized incrementAndPrint:
SimpleThreads

Synchronized on class

Because the method is static, we need to increment on SimpleThread's class
object.

Synchronized on this

If the method were not static, we could synchronize on the object's lock. However,
then we would need to pass the object to all of the threads it created so the threads
could synchronize on the particular object's lock.



Week 10 26

Synchronized Statements



Week 10 27

Synchronized Statements

● Synchronized statements are blocks of
statements synchronized using locks.

● We can increase the granularity of the locking
by using synchronize statements
– We create multiple locks, then lock blocks of

statements with different locks

– One thread may do one block while another does a
different blocks

– Locks are created whenever we create an object.



Week 10 28

Synchronized Statements:
SimpleThreads

Inc synchronized on Object lock1

Because the method is static, we need to use static Objects.

Print synchronized on Object lock2

Create two Objects



Week 10 29

Deadlock



Week 10 30

New Problem: Deadlock

● Deadlock occurs when one thread waits on a
lock owned by another thread, but the first
thread is waiting on a lock owned by the
second thread
– More generally, there is a circular wait, in which

each thread is waiting on another.

– That is, the deadlock may involve more than two
threads.



Week 10 31

Deadlock: Example

● By adding the second lock, we have introduced
the possibility of deadlock.
– Thread 1 could increment then start printing

acquiring lock2

– Thread 2, following close behind starts
incrementing, then starts to print, but is blocked by
Thread 1.

– Thread 1 continues on, then starts to increment
again. It is blocked because Thread 2 owns lock 1

– Neither thread progresses and the program stalls


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

