
Object Oriented Programming

Week 10 Part 1
Threads

Week 10 2

Lecture

● Concurrency, Multitasking, Process and Threads

● Thread Priority and State

● Java Multithreading

● Extending the Thread Class

● Defining a Class that Implements Runnable

● Adding Another Thread

● Thread Coordination

Week 10 3

Concurrency, Multitasking, Processes and
Threads

Week 10 4

Concurrency

● Concurrency is doing multiple things at the
same time.
– E.g. Printing while editing a document

– E.g. Browser loading images with accepting input

● Multitasking is running multiple tasks in a
program, requiring
– Starting multiple programs

– Coordinating the programs

– Ending the programs

Week 10 5

Processes and Threads

● Processes have a self-contained execution environment
– Separate memory and I/O

– More computation to start

– Less interference between processes

– Java usually runs one process

● Threads is concurrency that shares an execution environment
– Running in same memory with same I/O

– Less computation to start

– Treads can interfere with each other

– Every process has at least one thread

Week 10 6

Multitasking

● Multitasking is running multiple processes requiring
– Starting multiple programs

– Coordinating the programs

– Ending the programs

● Preemptive multitasking
– Each process is given a time slot to use the CPU

– The process is preempted when
● The time slot is over
● The process needs I/O (i.e. needs another process to run to read or write data)

● Cooperative multitasking (now rare)
– Programs yield to other programs

Week 10 7

Multithreading

● Each process runs multiple threads of control
– A thread of control is sequence of instructions that

runs in a process (i.e. a program)

● A process may run multiple threads of control
by trading off between them.

● A thread of execution is a program executed
independently of other parts of the program.

Week 10 8

Process VS Thread

S.No Process Thread

1 No Sharing of
Memory

Sharing of Memory and
other data structures

2 Can not Corrupt
Data structures

Can Corrupt Data
Structures

3 Context switching
is Expensive

Context Switching is
Chaeper

Week 10 9

Week 10 10

Thread Priority and State

Week 10 11

Thread Priority

● Each thread has a priority
– Priority is set by the setPriority(int newPriority)

method

● Thread priorities are integers between 1 and 10
– 1 is the minimum priority

– 10 is the maximum priority

● The scheduler chooses the highest priority
runnable thread when choosing next thread

Week 10 12

Thread State

● Thread may be in one of four states: new, runnable, blocked,
and dead

● A Thread, thread, is new when it is created

● When thread.start() is called, it moves from new to runnable.

● When it the thread.run() method terminates, it moves from
runnable to dead

● When a thread blocks, it moves from runnable to blocked.

● When the reason for the block goes away, it moves from
blocked to runnable

Week 10 13

Reasons from Blocking

● A thread moves from runnable to blocked if
– It sleeps

– It is waiting for I/O

– It is waiting to acquire a lock

– It is waiting for a condition

Week 10 14

Thread State Diagram

1. New

2. Runnable

3. Blocked

4. Dead

Week 10 15

Scheduling threads

● The scheduler starts a new thread when
– A thread has used up its time slot

– A thread has become blocked

– A thread with a higher priority has become runnable

● The scheduler chooses the highest priority
thread from the runnable threads.

Week 10 16

Terminating Threads

● Threads terminate when the run() method of
that thread exits

● To end a Thread, t

1) Call t.interrupt, which sets a flag

2) The Thread t must respond to the interrupt and exit.

● Interrupting the thread and having it exit allows
the thread to clean up.

Week 10 17

Java Multithreading

Week 10 18

Java Multithreading

● Each thread is associated with a Thread object
– Multitasking multithreading

– Virtual machine executes each thread for a short
time slice

– Thread schedule activates and deactivates threads.

Week 10 19

Thread Class

● In java.lang package

● Constructors
– Thread()

– Thread(String name)

– Thread(Runnable r)

– Thread(Runnable r, String name)

Week 10 20

Thread methods

● getName(): returns thread name

● getPriority(): returns thread priority

● setPriority(): sets the thread's priority

● isAlive(): return true if thread is alive; false o.w.

● run(): entry point for thread (like main() for threads)

● sleep(long ms): sleep for ms milliseconds

● start(): start a thread

● interrupt(): interrupt a thread

● isInterrupted: true if interrupted; false 0.w.

Week 10 21

Static Thread Methods

● currentThread(): the thread that is currently
running

Week 10 22

Runnable Interface

● Requires definition of the run() method

public interface Runnable
{
 public void run();
}

Week 10 23

Defining Threads

● Two ways
– Define a class that implements Runnable and pass

it to the Thread constructor

– Define a class that is a subclass of Thread

● In either case you need to define the run()
method.

Week 10 24

Extending Thread Class

Week 10 25

Example Extended Class

Constructor: sets name and sleep time

Run method: prints messagesRun method: prints four messages

Sleeps sleep time milliseconds

Prints a message

Week 10 26

Example Using Extended Class

Returns program start time

Time elapsed is current time – start time

Prints thread name, time and note

Print that main() started

Create a thread and start it

Define main()

Print that main finished

Set start time

Week 10 27

Example Output

Main starts

Starts thread

Main is done

Thread prints four times

The main thread finishes before the thread it started prints its first line. The JVM runs the
thread until it completes

Week 10 28

Defining Class that Implements Runnable

Week 10 29

Example Runnable Class

Only difference is it implements
Runnable

Week 10 30

Example Using Runnable Class

Only difference is it calls the
Thread constructor and passing in
Runnable class

Week 10 31

Adding Another Thread

Week 10 32

Example: Adding Second Thread

Thread 1 prints once a second

Thread 2 prints once a half second

Week 10 33

Example: Second Thread Output

Main starts two thread and finishes

Thread 2 prints first time

Thread 1 prints first time

Thread 2 prints second and third time

Thread 1 prints second time

Thread 2 fourth and last time

Thread 1 third and fourth, finishing

Week 10 34

Coordinating Threads

Week 10 35

Coordinating Threads

● Our threads do not wait for each other

● Suppose we want the main function to wait for
one of the other functions
– The join() method causes the calling thread to wait

until the thread on which the method is called
terminates

– Final void join() throws InterruptedException

Week 10 36

Join Example 1: t2.join()

Wait until t2 finishes

Week 10 37

Example 1: Output

Main terminates when Thread 2 finishes

Week 10 38

Example 2: Waiting for t1 to finish

Wait until t1 finishes

Week 10 39

Example 2: Output

Main terminates when Thread 1 finishes

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Process VS Thread
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Thread Basics……
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

