Object Oriented Programming

Week 10 Part 1
Threads

Lecture

Concurrency, Multitasking, Process and Threads
Thread Priority and State

Java Multithreading

Extending the Thread Class

Defining a Class that Implements Runnable
Adding Another Thread
Thread Coordination

Week 10

Concurrency, Multitasking, Processes and
Threads

Week 10

Concurrency

e Concurrency is doing multiple things at the
same time.

- E.g. Printing while editing a document

- E.g. Browser loading images with accepting input
o Multitasking iIs running multiple tasks in a

program, requiring

— Starting multiple programs

— Coordinating the programs

- Ending the programs

Week 10

Processes and Threads

* Processes have a self-contained execution environment
— Separate memory and 1/O
- More computation to start
— Less interference between processes
— Java usually runs one process

e Threads is concurrency that shares an execution environment
— Running in same memory with same /O
— Less computation to start
— Treads can interfere with each other
— Every process has at least one thread

Week 10

Multitasking

e Multitasking is running multiple processes requiring
— Starting multiple programs
— Coordinating the programs
— Ending the programs

* Preemptive multitasking

— Each process is given a time slot to use the CPU

— The process Is preempted when
* The time slot is over
* The process needs I/O (i.e. needs another process to run to read or write data)

o Cooperative multitasking (now rare)
— Programs yield to other programs

Week 10

Multithreading

 Each process runs multiple threads of control

— A thread of control is sequence of instructions that
runs in a process (i.e. a program)

A process may run multiple threads of control
by trading off between them.

 Athread of execution is a program executed
Independently of other parts of the program.

Week 10

Process VS Thread

S.No | Process Thread

1 No Sharing of Sharing of Memory and
Memory other data structures

2 Can not Corrupt | Can Corrupt Data
Data structures Structures

3 Context switching Context Switching is
IS Expensive Chaeper

Week 10

What 15 a Process?

+ Execution context

— Program counter (FC) .

— Stack pomter (5F)
- Data regusters

* Code

» Data

v Stack

sate Dnia

Procass

What 15 2 Thread?

+ Expcution confext

— Prozram counter (FC)
— Stack pomnter (5F)

— Data rezsters

Week 10

ji-u
T

SP(TY)

BC(T])—

RC(TY)

Thread Priority and State

Week 10

10

Thread Priority

« Each thread has a priority

— Priority Is set by the setPriority(int newPriority)
method

 Thread priorities are integers between 1 and 10
— 1 is the minimum priority
— 10 Is the maximum priority

e The scheduler chooses the highest priority
runnable thread when choosing next thread

Week 10 11

Thread State

Thread may be in one of four states: new, runnable, blocked
and dead

A Thread, thread, is new when it is created
When thread.start() is called, it moves from new to runnable

When it the thread.run() method terminates, it moves from
runnable to dead

When a thread blocks, it moves from runnable to blocked.

When the reason for the block goes away, it moves from
blocked to runnable

Week 10

12

Reasons from Blocking

e Athread moves from runnable to blocked if
— It sleeps
— It Is waiting for 1/O
— It is walting to acquire a lock
— It is waiting for a condition

Week 10

Thread State Diagram

runnable

rrrrr its
1. New \

2. Runnable [dead]
3. Blocked
4. Dead

[new blocked]
start block
]Ak

Week 10

14

Scheduling threads

e The scheduler starts a new thread when
— Athread has used up its time slot
— A thread has become blocked

— Athread with a higher priority has become runnable

e The scheduler chooses the highest priority
thread from the runnable threads.

Week 10 15

t

I
t

Terminating Threads

"hreads terminate when the run() method of
nat thread exits

0 end a Thread, t

1) Call t.interrupt, which sets a flag
2) The Thread t must respond to the interrupt and exit.

nterrupting the thread and having it exit allows
he thread to clean up.

Week 10 16

Java Multithreading

Week 10

17

Java Multithreading

« Each thread is associated with a Thread object

— Multitasking multithreading

— Virtual machine executes each thread for a short
time slice

— Thread schedule activates and deactivates threads.

Week 10

18

Thread Class

e |In java.lang package

e Constructors

T

T
T
T

nread()
Nread(String name)
nread(Runnable r)

nread(Runnable r, String name)

Week 10

19

Thread methods

getName(): returns thread name

getPriority(): returns thread priority

setPriority(): sets the thread's priority

ISAlive(): return true if thread is alive; false o.w.
run(): entry point for thread (like main() for threads)
sleep(long ms): sleep for ms milliseconds

start(): start a thread

Interrupt(): interrupt a thread

IsInterrupted: true if interrupted; false 0.w.

Week 10

20

Static Thread Methods

e currentThread(): the thread that is currently
running

Week 10

21

Runnable Interface

 Requires definition of the run() method

public interface Runnable

{

public void run();

}

Week 10

22

Defining Threads

e TwWO ways

— Define a class that implements Runnable and pass
It to the Thread constructor

— Define a class that is a subclass of Thread

* In either case you need to define the run()

method.
class RThread implements Runnable class EThread extends Thread
{ public void run() { { public void run{){

} ¥

Week 10

23

Extending Thread Class

Week 10

24

Example Extended Class

package example.threads;

public class SubclassThread extends Thread {

long sleepTime = 8;

ubclassThread{long sleepTime, String name) {
his.sleepTime = sleepTime;
this.setName{name);

}

@0verride
ic void run() {

for (int 1 = @; 1 < 4; 1+4) {

try {
Thread. sleep{sleepTime);

} caotch (InterruptedException &) {
SimpleThreads.printMessage("Interrupted: "

+ e.getMessage(});

}

SimpleThreads.printMessage("loop " + 1);

!
!
!

Week 10

25

Example Using Extended Class

public class SimpleThreads {
static long startTime = @;

public static long getStartTime() {
return startTime;

}

| public static void printMessage(String message) {
System.out. format("%s, running: %d ms, ¥s¥n",
Thread. currentThread() .getName(),
System.currentTimeMillis() - startTime,
message);

public static void main{String args[])
throws InterruptedException {

startTime = System.currentTimeMillis();

printMessage("Starting main{}");

SubclassThread t1 = new SubclassThread(1888, "Thread 1");
t1.start();

printMessage("Thread 1 started");

printMessage("Ending main(J}");

e

Week 10 26

Example Output

[Main'starts = main, running: @ ms, Starting main()
_mnin, running: 5 ms, Thread 1 started
IVES GonE -+ "ain, running: 5 ms, Ending main()

Thread 1, running: 1819 ms, loop @
Thread 1, running: 2811 ms, loop 1

_Thre,ﬂd 1:. running: IA12 ms,].'I:I'I:II:I 2

Thread 1, running: 4818 ms, loop 3

The main thread finishes before the thread it started prints its first line. The JVM runs the
thread until it completes

Week 10 27

Defining Class that Implements Runnable

Week 10

28

Example Runnable Class

ic class RunnableThread implements Runnable {
long sleepTime = @;

RunnableThread{long sleepTime) {
this.sleepTime = sleepTime;

}

E0verride
public wvoid run() {
for (int 1 = @; 1 < 4; 14++) {
try {
Thread.sleep(sleepTime);
} catch (InterruptedException e) {
SimpleThreads.printMessage("Interrupted: "
+ e.getMessage(});
}

SimpleThreads.printMessage("loop " + 1);

Week 10 29

Example Using Runnable Class

public class SimpleThreads {
static long startTime = @;

public static long getStartTime() {
return startTime;

}

public static void printMessage(String message) {
System.out.format("¥s, running: %d ms, %s¥n",
Thread. currentThread().getName(),
System.currentTimeMillis() - startTime,
mMessage);

}

public static void main{String args[])
throws InterruptedException {

startTime = System.currentTimeMillis();

printMessage("Starting main{)");

Thread t1 = new Thread{new RunnaobleThread(188@%, "Thread 1");

t1l.start();
printMessage("Thread 1 started");

Week 10 30

Adding Another Thread

Week 10

31

Example: Adding Second Thread

public static void main{String args[])
throws InterruptedException {
startTime = System.currentTimeMillis();
printMessage("Starting main{)"};

_Thrend £1 = new Thread(new RunnableThread(188@8), "Thread 1");

tl.start();
printMessage("Thread 1 started");

_Thr‘ead t? = new Thread{new RunnableThread(508), "Thread 2");

t2.start();
printMessage("Thread 2 started");

printMessage("Ending main()");

Week 10 32

Example: Second Thread Output

main, running:
main, running:

ms, Starting main()
ms, Thread 1 started
main, running: ms, Thread 2 started
main, running: ms, Ending main()
Thread 2, running: 509 ms, loop @

0D =) =) &

Thread 1, running: 1088 ms, loop @
Thread 2, running: 1813 ms, loop 1
Thread 2, running: 1518 ms, loop 2
Thread 1, running: 2814 ms, loop 1
Thread 2, running: 2828 ms, loop 3
Thread 1, running: 3815 ms, loop 2
Thread 1, running: 4818 ms, loop 3

Week 10 33

Coordinating Threads

Week 10

34

Coordinating Threads

e Our threads do not wait for each other

e Suppose we want the main function to wait for
one of the other functions

— The join() method causes the calling thread to walit

until the thread on which the method is called
terminates

— Final void join() throws InterruptedException

Week 10

35

Join Example 1: t2.join()

public static wvoid main{String args[])
throws InterruptedException {
startTime = System.currentTimeMillis();
printMessage("Starting main(}");

Thread t1 = new Thread{new RunnableThread(188@%, "Thread 1");

tl.start();
printMessage("Thread 1 started")};

Thread t2 = new Thread{new RunnableThread(5@887%, "Thread 2");
t2 . start();
printMessage("Thread 2 started");

printMessage("Ending main{)");

Week 10 36

Week 10

Example 1: Output

main, running: @ ms, Starting main()
main, running: & ms, Thread 1 started
main, running: & ms, Thread 2 started

Thread
Thread
Thread
Thread
Thread
Thread

FUnAing:
FUnNALNGg:
FUnNALNg:
FUNALng :
FUnNALNG:
FUnAing:
main, running: 2821 ms,
Thread 1, running: 3814
Thread 1, running: 4817

511 ms, loop @

1087 ms, loop @
1815 ms, loop 1
1518 ms, loop 2
2088 ms, loop 1
2020 ms, loop 3

Ending main{)
ms, loop Z
ms, loop 3

37

Example 2: Waliting for t1 to finish

public static void main{String args[])

}

throws InterruptedException {
startTime = System.currentTimeMillis();
printMessage("Starting main{(}");

Thread t1 = new Thread{new RunnableThread{1888), "Thread 1");
t1l.start(};
printMessage("Thread 1 started");

Thread £2 = new Thread{new RunnableThread(588), "Thread 2");
t2.start(D;
printMessage("Thread 2 started");

t1} join();
printMessage("Ending main{)");

Week 10

38

Example 2: Output

main, running: @ ms, Starting main()
main, running: 5 ms, Thread 1 started
main, running: & ms, Thread 2 started
Thread 2, running: 5@8 ms, loop @

Thread 1, running: 1887 ms, loop @
Thread 2, running: 1814 ms, loop 1
Thread 2, running: 1%19 ms, loop Z
Thread 1, running: 2888 ms, loop 1
Thread 2, running: 2825 ms, loop 3
Thread 1, running: 3814 ms, loop Z
Thread 1, running: 4818 ms, loop 3

B e MBS WhEN TSR GBS - nain, ruming: 4619 ms, Ending nainC)

Week 10

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Process VS Thread
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Thread Basics……
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

