Object Oriented Programming

Week 9 Part 2
Types of Streams

Week 9

Lecture

More on Streams
Byte Streams
Character Streams
Data Streams
Object Streams

Week 9

More on Streams

Week 9

Type of Streams

 Determines how the bits are interpreted

— Byte Streams: sequence of eight bit bytes
e Most primitive type
— Character Streams: sequence of Unicode characters

 May be ASCII, but allows other type of script
* Interpretation of characters depends on localization

— Data Streams: sequence of primitive values
e boolean, byte, short, int, long, float, double
e String is the only type of object that can be written

— Object Streams: sequence of object

e Objects with Serializable interface
- reference are complicated

Week 9

Byte Streams

e |nputStream: byte stream input

— “public abstract class InputStream extents Object
Implements Closeable”

— Subclasses of InputStream must define a method that
returns the next byte

e QOutputStream: byte stream output

— “public class OutputStream extends Object implements
Closeable, Flushable”

— Subclass of OutputStream must define a method that
writes out a byte of data

Week 9

OutputStream methods

“PrintStream format (String f, Object ... args)”

— Like the C print command

— Returns the PrintStream that called it

“void print(x)”

— Writes character representation of whatever is passed as x; calls toString, if X is an object
“void printin(x)”

— Like print, but adds a newline

“void write(int b)”

— Writes a single byte to the stream.

“void close()”
— Closes the stream

“void flush()”
— Flushes the stream

Week 9

Byte InputStream Methods

*abstract int read()”
— Reads the next byte in the stream

“Int read(byte[] b)”
— Reads enough bytes to fill the array.

“Int read(byte() b, int offset, int length)”
- Reads length number of bytes into b starting at offset.

“void close()”
— Closes the stream

Week 9

Aside: Why not use tests?

e In the last lecture we developed tests as
example to build up a specification of a Java

class
— Why not this time?

By using standard input, we can demonstrate
problems with it.

 To run using standard input, we need to Run as
Java Application and provide a main

Week 9

Example: Standard I/O

public static wvoid main(S5tring[] args) {

[Method read() needs bytef] "> byte[] buf = new byte[3];
[Sifings are easiertowork with]-> String name = "xxx";

do {
try {
[PrRt prompE = System.out.print("Enter Nat> ");
Readinptt > System.in.read(buf, 9, 3);
Convertinputtosting > name = new String(buf);

if (name.equals{"Nat")) {

Print “Hello Nat” on standard output System.out.println("Hello " + name);

} else {

Print unexpected input on std eror System.err.printin("Got " + name);
}

isthodiread0 WSO/ EXeepioRM-3- catch (IOException €) {

e.printStackTrace();
¥

} while (!name.equals{"Nat"});

Week 9 9

Example Outputl

Bl console 52 |*/ Problems @ Javadoc |

<terminated> ExampleStandard|O [Java Applic

Enter Nat> Mot
Helln Mat

It seems to work.
Let's try something other than “Nat”

Week 9

10

Example Output?2

El Console 53 ‘m Problems m J:
<terminated> ExampleStandard|D [Ja

R SoEnEReS > Enter Nat> xxx
IREA0S 0PSO SNEWINES IR - Got xxxEnter Nats Enter Nats
‘Reads <newline> into buf; now “<newline>xx o1

b
EnerNat
ProGramIGUE I Hello Nat

Standard Input is green
Standard Output is black
Standard Error is red

Week 9 11

What happened

 The read() method only reads exactly the
number of characters you tell it to.

— It is a very primitive function, it does not help you at
all with the input

 We do not want to read from byte streams

Week 9

12

Character Streams

This Is why we need to use character streams
when reading input

Character strings also let you use non-latin
alphabets

However, character strings still only let you read
one character at a time.

A character stream will

Week 9 13

Character InputStream Methods

e “Int read()”
- Reads the next byte In the stream

e “Int read(char[] b, int offset, int length)”

— Reads length number of chars into b starting at
offset.

e “void close()”
— Closes the stream

Week 9

14

Character Stream Problem

 The character stream does not solve the
problem we saw with byte streams.

- We still only read character one at a time.

— We still need to deal with the newlines as
characters rather than as line terminators

e Also, the program waits for each charater
— |t does not allow type ahead

 WWe need to read a characters into memory
before we can check for lines or tokens

Week 9

15

Example

o StringReader(“test”);

— Creates a character
stream

@Test
public void testReadWolf() {

BufferedReader in = new BufferedReader(new StringReader("test"});
ByteArrayOutputStream outString = new ByteArrayOutputStream();
PrintStream out = new PrintStream{outString);
ByteArrayOutputStream errString = new ByteArroyOutputStream();
PrintStream err = new PrintStreaom{errString);

AnimalsInOut aio = new AnimalsInOut(in, out, err);
Wolf w = new Wolf{"Meat");

try {
w = w.read{aio);

} catch (I0Exception e} {
fail("read() failed for Wolf");
e.printStackTrace();

}

assertfqual s("Wolf howls, eots test", w.toString(});

System. out.println{"readWolf returned: " + w);

16

Buffered Streams

e Buffered streams create an area in memory Into
which it reads an array of characters or bytes

— The buffer is filled as characters are available

— The methods on a buffered stream return characters from
the buffer

e Allow reading lines and tokens

* More efficient
— Characters are read when they are available
— The program need not wait for them

Week 9 17

Example

e BufferedReader

public void testReadWolf() {
BufferedReader in = new BufferedReader(new StringReader("test"});

— ByteArrayOutputStream outString = new ByteArrayOutputStream();
Creates the bUﬁer PrintStream out = new PrintStream{outString);

ByvteArrayOutputStream errString = new ByteArrayOutputStream();

and the methOdS tha.t PrintStream err = new PrintStream{errString);
work on the buffer AninalsIn0ut aio - new AnimalsInOut(in, out, err);

Wolf w = new Wolf{"Meat");

try {

e Created from a W = w.read(aio);

} catch (I0Exception e} {

character stream ormSeairacecy; T ot
}

that provides the ki R A
iIndividual characters

— StringReader(“test”)

Week 9 18

Scanners

e Scanners are object that can be created from a
buffered input stream just as buffered input streams can
be created from input streams

e Scanners break an input stream into tokens

— Atoken is a sequence of characters that is separated by
white space (i.e. space, tab and newline)

e |n the fol
tests to ©

Input anc

owing example, we can go back to using unit
emonstrate because we are not demonstrating
output from the console

Week 9 19

Output

&) conscle 53 ;

.:tennﬁnat&db S

Here
are
four
tokens

Example: Scanner

BTest
public void testScanner() {

Scanner s = null;
String temp = null;

ByteArrayOutputStream outString = new ByteArrayOutputStream();
PrintStream out = new PrintStream{outString);

StringReader sr = new StringReader("Here urehtfﬂurhntﬂkens“}ﬂ
= = new Scanner{new BufferedReader(sr));

while (=.hasNext()) {
temp = s.next();
out.println{temp);
System.out.println{temp);

}

try {
assertEquals(sr.read(), -1);
} cotch (I0Exception e) {
e.printStackTrace();
fail("In testScanner(), read() threw and I0Exception");

}
assertEqual s{"Here\naresnfourintokensin", outString.toString());

s.close();

Week 9 20

Discussion

Input Is separated by space, then tab, then newline
— “Here are\tfour\ntokens”

The temp string is needed the scanner removes
characters from the stream when it does next()

read() returns -1 when there is no more input

Each token is followed by a newline because we
used printin(temp)

— “Here\nare\nfour\ntokens\n”

Week 9

21

PrintStream Is a
BufferedOutputStream

Like input, output Iis also buffered.

This allows the output to be formatted into a
buffer before it is printed

However, If the program crashes, everything in
the buffer is lot.

The method “flush()” tells a buffered buffered
stream to release its output to the output
stream

- Important when testing crashing programs

Week 9

22

Formatting

o Buffered output streams allow more formatting
- PrintStream is a buffered output stream

e Buffered output streams give you

— print()
— printin()
- format(): a method like the C print function

Week 9

23

Data Streams

e Data streams are not character streams
— They return bits rather than characters or bytes
— It is up to the program to interpret the bits

— The bits are specified by the write and read
methods

e Int readint()
e double readDouble()
e String readUTF()

Week 9

24

Data Stream Example

@Test
public wvoid testDataStream() {
DataQutputStream dos = new DotaQutputStream{new BufferedOutputStream{FOut));
DotalnputStream dis = new DatalnputStream{new BufferedInputStream{fInd);
double[] ddata = {1.@, 2.1, 3.2};
int[] idata = {1, 2, 3};
String[] sdata = {"one", "two", "three"};
double dtemp = @;
int itemp = 8;
String stemp = "";
try {
for (int 1 = @; 1 < 3; 144 {
dos.writeDouble{ddatal[i]);
dos.writeInt(idata[1]);
dos. writelUTF{sdatal[i]);
1
dos.close();
} caotch (I0Exception e} {
e.printStackTrace();
fail("In testDataStream, write threw an exception");

}

try {
while(true) {
dtemp = dis.readlouble();
itemp = dis.readInt();
stemp = dis.readUTF();
System.out. format("Read: %f, %¥d, ¥s¥n", dtemp, itemp, stemp);
1
} cotch (EOFException e) {
System.out.println("Reached End of File");
} caotch (I0Exception e) {
e.printStackTrace();
fail("In testDataStream, close threw an exception");
1
try {
dis.close();
} catch (I0Exception e} {
e.printStackTrace();
fail("In testDataStream, close threw an exception");

DS Example: Set Up Variables

DotaQutputStream dos = new DatalOutputStream(
new BufferedOutputStreamfOut));

DatalnputStream dis = new DatalnputStream(
new BufferedInputStream{fIn));

double[] ddata = {1.@, 2.1, 3.2};

int[] idata = {1, 2, 3};

String[] sdata = {"one", "two", "three"};

double dtemp = @;

int itemp = @;

String stemp = :

DataOutputStream takes a BufferedOutputStream

» BufferedOutputStream takes a FileOutputStream

DatalnputStream takes a BufferedIinputStream

» BufferedIinputStream takes a FilelnputStream

method

FileOutputStream and FilelnputStream are created in @Before method
File associated with FileOutputStream and FilelnputStream is deleted in @after

Week 9

26

DS Example: @Before and @ After

public void setUp() throws Exception {
‘New FileOutputStream and FilelnputStream /1 7 T 12 S 2 reent e s,
fIn = new FileInputStream{"/tmp/test.dat”);
}

[@Aftertest = enrter

public void tearDown() throws Exception {

fOut.close();
Close Streams ¢ ooy
DRTETE = 4eieteO;

}

Week 9 27

DS Example: Write out Data

Loop through three item in each array
or (int 1 = @; 1 < 3; 1+4) {
dos.writeDouble(ddatal[1]);
Vi COTEET e o SAET AT %o* rtelnt(idatol1);
dos.writeUTF(sdata[1]);
}
_Close the stream after writing ~ dos.close();
catch {(I0Exception e) {
Falifthere is an exception ¢ printseacelrocels;
fail("In testDataStream, write threw an exception);

}

Week 9

28

DS Example: Read Data Back In

try {

Continue reading until EOF thrown ~— wri1eCred

dtemp = dis.readDouble();
'Read data into temporary variables 577 DR Ee B
stemp = dis.readUTF();

dtemp, itemp, stemp);

}
ICAEIECF EXEEpBN BRABAIIII -~} cotch CEOrtsception o) ¢

System.out.println{"Reached End of File");
} cotch (I0Exception e) {
e.printStackTrace();
fail{("In testDataStream,”
+ " read threw an exception");

¥

try {
[Close Stream == 7 dic close0);

} cotch (I0Exception e) {
e.printStackTrace();
fail{("In testDataStream,”
+ "IClﬂSE threw an exception");

Week 9

Running Data Stream Example

try {
while(true) {
dtemp = dis.readDouble();
itemp = dis.readInt();
stemp = dis.readUTF();

dtemp, itemp, stemp);
}
} caotch (EOFException e} {

} cotch (I0Exception e) {

e.printStackTrace();
fail("In testDataStream,"

1 -
B console £ Ii-'- Problems @ + " read threw an exception");
<terminated> DataStreamTest [JUr ¥
Read: 1.000000, 1, one try {
Read: 2.100908, 2, two dis.close();
Read: 3.200008, 3, three I catch (I0Excepticn e) {
Reached End of File e.printStackTrace();

fail{("In testDataStream,”

I
+ “|clﬂse threw an exception");

Week 9

30

Object Streams

e |t Is possible to read and write objects

— ODbject that will be read and write must implement
the Serializable interface

— Objects input from ObjectinputStream
— Objects output to ObjectOutputStream

e The difficulty in printing objects is that they may
reference other objects

- How do you make sure that only one object is
written and all other refer to 1t?

Week 9 31

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

