
Week 9 1

Object Oriented Programming

Week 9 Part 2
Types of Streams



Week 9 2

Lecture

● More on Streams

● Byte Streams

● Character Streams

● Data Streams

● Object Streams



Week 9 3

More on Streams



Week 9 4

Type of Streams

● Determines how the bits are interpreted
– Byte Streams: sequence of eight bit bytes

● Most primitive type

– Character Streams: sequence of Unicode characters
● May be ASCII, but allows other type of script
● Interpretation of characters depends on localization

– Data Streams: sequence of primitive values
● boolean, byte, short, int, long, float, double
● String is the only type of object that can be written

– Object Streams: sequence of object
● Objects with Serializable interface

– reference are complicated



Week 9 5

Byte Streams

● InputStream: byte stream input
– “public abstract class InputStream extents Object

implements Closeable”

– Subclasses of InputStream must define a method that
returns the next byte

● OutputStream: byte stream output
– “public class OutputStream extends Object implements

Closeable, Flushable”

– Subclass of OutputStream must define a method that
writes out a byte of data



Week 9 6

OutputStream methods

● “PrintStream format (String f, Object … args)”
– Like the C print command

– Returns the PrintStream that called it

● “void print(x)”
– Writes character representation of whatever is passed as x; calls toString, if X is an object

● “void println(x)”
– Like print, but adds a newline

● “void write(int b)”
– Writes a single byte to the stream.

● “void close()”
– Closes the stream

● “void flush()”
– Flushes the stream



Week 9 7

Byte InputStream Methods

● “abstract int read()”
– Reads the next byte in the stream

● “int read(byte[] b)”
– Reads enough bytes to fill the array.

● “int read(byte() b, int offset, int length)”
– Reads length number of bytes into b starting at offset.

● “void close()”
– Closes the stream



Week 9 8

Aside: Why not use tests?

● In the last lecture we developed tests as
example to build up a specification of a Java
class
– Why not this time?

● By using standard input, we can demonstrate
problems with it.

● To run using standard input, we need to Run as
Java Application and provide a main



Week 9 9

Example: Standard I/O

Print prompt
Read input
Convert input to string

Print “Hello Nat” on standard output

Print unexpected input on std error

Method read() throws IO exception 

Method read() needs byte[]
Strings are easier to work with]



Week 9 10

Example Output1

It seems to work.
Let's try something other than “Nat”



Week 9 11

Example Output2

Enter “xxx<newline>”

Reads “xxx”; prints “Got xxx”; <newline> left

Reads <newline> into buf; now “<newline>xx

Enter “Nat”

Program quits

Standard Input is green
Standard Output is black
Standard Error is red



Week 9 12

What happened

● The read() method only reads exactly the
number of characters you tell it to.
– It is a very primitive function, it does not help you at

all with the input

● We do not want to read from byte streams



Week 9 13

Character Streams

● This is why we need to use character streams
when reading input

● Character strings also let you use non-latin
alphabets

● However, character strings still only let you read
one character at a time.

● A character stream will



Week 9 14

Character InputStream Methods

● “int read()”
– Reads the next byte in the stream

● “int read(char[] b, int offset, int length)”
– Reads length number of chars into b starting at

offset.

● “void close()”
– Closes the stream



Week 9 15

Character Stream Problem

● The character stream does not solve the
problem we saw with byte streams.
– We still only read character one at a time.

– We still need to deal with the newlines as
characters rather than as line terminators

● Also, the program waits for each charater
– It does not allow type ahead

● We need to read a characters into memory
before we can check for lines or tokens



Week 9 16

Example

● StringReader(“test”);
– Creates a character

stream



Week 9 17

Buffered Streams

● Buffered streams create an area in memory into
which it reads an array of characters or bytes
– The buffer is filled as characters are available

– The methods on a buffered stream return characters from
the buffer

● Allow reading lines and tokens

● More efficient
– Characters are read when they are available

– The program need not wait for them



Week 9 18

Example

● BufferedReader
– Creates the buffer

and the methods that
work on the buffer

● Created from a
character stream
that provides the
individual characters
– StringReader(“test”)



Week 9 19

Scanners

● Scanners are object that can be created from a
buffered input stream just as buffered input streams can
be created from input streams

● Scanners break an input stream into tokens
– A token is a sequence of characters that is separated by

white space (i.e. space, tab and newline)

● In the following example, we can go back to using unit
tests to demonstrate because we are not demonstrating
input and output from the console



Week 9 20

Example: Scanner
Create a Scanner

Read from a StringReader

Print each of the tokens twice

Tokens are separated by newlines

Output



Week 9 21

Discussion

● Input is separated by space, then tab, then newline
– “Here are\tfour\ntokens”

● The temp string is needed the scanner removes
characters from the stream when it does next()

● read() returns -1 when there is no more input

● Each token is followed by a newline because we
used println(temp)
– “Here\nare\nfour\ntokens\n”



Week 9 22

PrintStream is a
BufferedOutputStream

● Like input, output is also buffered.

● This allows the output to be formatted into a
buffer before it is printed

● However, if the program crashes, everything in
the buffer is lot.

● The method “flush()” tells a buffered buffered
stream to release its output to the output
stream
– Important when testing crashing programs



Week 9 23

Formatting

● Buffered output streams allow more formatting
– PrintStream is a buffered output stream

● Buffered output streams give you
– print()

– println()

– format(): a method like the C print function



Week 9 24

Data Streams

● Data streams are not character streams
– They return bits rather than characters or bytes

– It is up to the program to interpret the bits

– The bits are specified by the write and read
methods

● int readInt()
● double readDouble()
● String readUTF()



Week 9 25

Data Stream Example
Set up Variables

Write out Data

Read in Data



Week 9 26

DS Example: Set Up Variables

DataOutputStream

DataInputStream

Data to be written out

Temporary variables to read data into

● DataOutputStream takes a BufferedOutputStream
● BufferedOutputStream takes a FileOutputStream

● DataInputStream takes a BufferedInputStream
● BufferedInputStream takes a FileInputStream

● FileOutputStream and FileInputStream are created in @Before method
● File associated with FileOutputStream and FileInputStream is deleted in @after

method



Week 9 27

DS Example: @Before and @After

@Before test

New FileOutputStream and FileInputStream

@After test

Point File to file created in @Before

Close Streams

Delete File



Week 9 28

DS Example: Write out Data

Loop through three item in each array

Write correct type for each array

Close the stream after writing

Fail if there is an exception



Week 9 29

DS Example: Read Data Back In

Continue reading until EOF thrown

Read data into temporary variables

Catch EOF exception and print

Catch other exceptions and fail

Close Stream

Catch IOException and fail

Print out floating point, decimal, and string



Week 9 30

Running Data Stream Example

Output note: reached EOF

Output data: double, int, string



Week 9 31

Object Streams

● It is possible to read and write objects
– Object that will be read and write must implement

the Serializable interface

– Objects input from ObjectInputStream

– Objects output to ObjectOutputStream

● The difficulty in printing objects is that they may
reference other objects
– How do you make sure that only one object is

written and all other refer to it?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

