Object Oriented Programming

Week 9 Part 2
Types of Streams

Week 9



Lecture

More on Streams
Byte Streams
Character Streams
Data Streams
Object Streams

Week 9



More on Streams

Week 9



Type of Streams

 Determines how the bits are interpreted

— Byte Streams: sequence of eight bit bytes
e Most primitive type
— Character Streams: sequence of Unicode characters

 May be ASCII, but allows other type of script
* Interpretation of characters depends on localization

— Data Streams: sequence of primitive values
e boolean, byte, short, int, long, float, double
e String is the only type of object that can be written

— Object Streams: sequence of object

e Objects with Serializable interface
- reference are complicated
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Byte Streams

e |nputStream: byte stream input

— “public abstract class InputStream extents Object
Implements Closeable”

— Subclasses of InputStream must define a method that
returns the next byte

e QOutputStream: byte stream output

— “public class OutputStream extends Object implements
Closeable, Flushable”

— Subclass of OutputStream must define a method that
writes out a byte of data
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OutputStream methods

“PrintStream format (String f, Object ... args)”

— Like the C print command

— Returns the PrintStream that called it

“void print(x)”

— Writes character representation of whatever is passed as x; calls toString, if X is an object
“void printin(x)”

— Like print, but adds a newline

“void write(int b)”

— Writes a single byte to the stream.

“void close()”
— Closes the stream

“void flush()”
— Flushes the stream

Week 9



Byte InputStream Methods

*abstract int read()”
— Reads the next byte in the stream

“Int read(byte[] b)”
— Reads enough bytes to fill the array.

“Int read(byte() b, int offset, int length)”
- Reads length number of bytes into b starting at offset.

“void close()”
— Closes the stream
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Aside: Why not use tests?

e In the last lecture we developed tests as
example to build up a specification of a Java

class
— Why not this time?

By using standard input, we can demonstrate
problems with it.

 To run using standard input, we need to Run as
Java Application and provide a main
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Example: Standard I/O

public static wvoid main(S5tring[] args) {

[Method read() needs bytef] "> byte[] buf = new byte[3];
[Sifings are easiertowork with]-> String name = "xxx";

do {
try {
[PrRt prompE = System.out.print("Enter Nat> ");
Readinptt > System.in.read(buf, 9, 3);
Convertinputtosting > name = new String(buf);

if (name.equals{"Nat")) {

Print “Hello Nat” on standard output System.out.println("Hello " + name);

} else {

Print unexpected input on std eror System.err.printin("Got " + name);
}

isthodiread0 WSO/ EXeepioRM-3- catch (IOException €) {

e.printStackTrace();
¥

} while (!name.equals{"Nat"});
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Example Outputl

Bl console 52  |*/ Problems @ Javadoc |

<terminated> ExampleStandard|O [Java Applic

Enter Nat> Mot
Helln Mat

It seems to work.
Let's try something other than “Nat”
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Example Output?2

El Console 53 ‘m Problems m J:
<terminated> ExampleStandard|D [Ja

R SoEnEReS > Enter Nat> xxx
IREA0S 0PSO SNEWINES IR - Got xxxEnter Nats Enter Nats
‘Reads <newline> into buf; now “<newline>xx o1

b
EnerNat
ProGramIGUE I Hello Nat

Standard Input is green
Standard Output is black
Standard Error is red
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What happened

 The read() method only reads exactly the
number of characters you tell it to.

— It is a very primitive function, it does not help you at
all with the input

 We do not want to read from byte streams
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Character Streams

This Is why we need to use character streams
when reading input

Character strings also let you use non-latin
alphabets

However, character strings still only let you read
one character at a time.

A character stream will
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Character InputStream Methods

e “Int read()”
- Reads the next byte In the stream

e “Int read(char[] b, int offset, int length)”

— Reads length number of chars into b starting at
offset.

e “void close()”
— Closes the stream
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Character Stream Problem

 The character stream does not solve the
problem we saw with byte streams.

- We still only read character one at a time.

— We still need to deal with the newlines as
characters rather than as line terminators

e Also, the program waits for each charater
— |t does not allow type ahead

 WWe need to read a characters into memory
before we can check for lines or tokens
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Example

o StringReader(“test”);

— Creates a character
stream

@Test
public void testReadWolf() {

BufferedReader in = new BufferedReader(new StringReader("test"});
ByteArrayOutputStream outString = new ByteArrayOutputStream();
PrintStream out = new PrintStream{outString);
ByteArrayOutputStream errString = new ByteArroyOutputStream();
PrintStream err = new PrintStreaom{errString);

AnimalsInOut aio = new AnimalsInOut(in, out, err);
Wolf w = new Wolf{"Meat");

try {
w = w.read{aio);

} catch (I0Exception e} {
fail("read() failed for Wolf");
e.printStackTrace();

}

assertfqual s("Wolf howls, eots test", w.toString(});

System. out.println{"readWolf returned: " + w);
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Buffered Streams

e Buffered streams create an area in memory Into
which it reads an array of characters or bytes

— The buffer is filled as characters are available

— The methods on a buffered stream return characters from
the buffer

e Allow reading lines and tokens

* More efficient
— Characters are read when they are available
— The program need not wait for them

Week 9 17



Example

e BufferedReader

public void testReadWolf() {
BufferedReader in = new BufferedReader(new StringReader("test"});

— ByteArrayOutputStream outString = new ByteArrayOutputStream();
Creates the bUﬁer PrintStream out = new PrintStream{outString);

ByvteArrayOutputStream errString = new ByteArrayOutputStream();

and the methOdS tha.t PrintStream err = new PrintStream{errString);
work on the buffer AninalsIn0ut aio - new AnimalsInOut(in, out, err);

Wolf w = new Wolf{"Meat");

try {

e Created from a W = w.read(aio);

} catch (I0Exception e} {

character stream ormSeairacecy; T ot
}

that provides the ki R A
iIndividual characters

— StringReader(“test”)
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Scanners

e Scanners are object that can be created from a
buffered input stream just as buffered input streams can
be created from input streams

e Scanners break an input stream into tokens

— Atoken is a sequence of characters that is separated by
white space (i.e. space, tab and newline)

e |n the fol
tests to ©

Input anc

owing example, we can go back to using unit
emonstrate because we are not demonstrating
output from the console
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Output

&) conscle 53 ;

.:tennﬁnat&db S

Here
are
four
tokens

Example: Scanner

BTest
public void testScanner() {

Scanner s = null;
String temp = null;

ByteArrayOutputStream outString = new ByteArrayOutputStream();
PrintStream out = new PrintStream{outString);

StringReader sr = new StringReader("Here urehtfﬂurhntﬂkens“}ﬂ
= = new Scanner{new BufferedReader(sr));

while (=.hasNext()) {
temp = s.next();
out.println{temp);
System.out.println{temp);

}

try {
assertEquals(sr.read(), -1);
} cotch (I0Exception e) {
e.printStackTrace();
fail("In testScanner(), read() threw and I0Exception");

}
assertEqual s{"Here\naresnfourintokensin", outString.toString());

s.close();
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Discussion

Input Is separated by space, then tab, then newline
— “Here are\tfour\ntokens”

The temp string is needed the scanner removes
characters from the stream when it does next()

read() returns -1 when there is no more input

Each token is followed by a newline because we
used printin(temp)

— “Here\nare\nfour\ntokens\n”
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PrintStream Is a
BufferedOutputStream

Like input, output Iis also buffered.

This allows the output to be formatted into a
buffer before it is printed

However, If the program crashes, everything in
the buffer is lot.

The method “flush()” tells a buffered buffered
stream to release its output to the output
stream

- Important when testing crashing programs
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Formatting

o Buffered output streams allow more formatting
- PrintStream is a buffered output stream

e Buffered output streams give you

— print()
— printin()
- format(): a method like the C print function
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Data Streams

e Data streams are not character streams
— They return bits rather than characters or bytes
— It is up to the program to interpret the bits

— The bits are specified by the write and read
methods

e Int readint()
e double readDouble()
e String readUTF()
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Data Stream Example

@Test
public wvoid testDataStream() {
DataQutputStream dos = new DotaQutputStream{new BufferedOutputStream{FOut));
DotalnputStream dis = new DatalnputStream{new BufferedInputStream{fInd);
double[] ddata = {1.@, 2.1, 3.2};
int[] idata = {1, 2, 3};
String[] sdata = {"one", "two", "three"};
double dtemp = @;
int itemp = 8;
String stemp = "";
try {
for (int 1 = @; 1 < 3; 144 {
dos.writeDouble{ddatal[i]);
dos.writeInt(idata[1]);
dos. writelUTF{sdatal[i]);
1
dos.close();
} caotch (I0Exception e} {
e.printStackTrace();
fail("In testDataStream, write threw an exception");

}

try {
while(true) {
dtemp = dis.readlouble();
itemp = dis.readInt();
stemp = dis.readUTF();
System.out. format("Read: %f, %¥d, ¥s¥n", dtemp, itemp, stemp);
1
} cotch (EOFException e) {
System.out.println("Reached End of File");
} caotch (I0Exception e) {
e.printStackTrace();
fail("In testDataStream, close threw an exception");
1
try {
dis.close();
} catch (I0Exception e} {
e.printStackTrace();
fail("In testDataStream, close threw an exception");



DS Example: Set Up Variables

DotaQutputStream dos = new DatalOutputStream(
new BufferedOutputStreamfOut));

DatalnputStream dis = new DatalnputStream(
new BufferedInputStream{fIn));

double[] ddata = {1.@, 2.1, 3.2};

int[] idata = {1, 2, 3};

String[] sdata = {"one", "two", "three"};

double dtemp = @;

int itemp = @;

String stemp = :

DataOutputStream takes a BufferedOutputStream

» BufferedOutputStream takes a FileOutputStream

DatalnputStream takes a BufferedIinputStream

» BufferedIinputStream takes a FilelnputStream

method

FileOutputStream and FilelnputStream are created in @Before method
File associated with FileOutputStream and FilelnputStream is deleted in @after
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26



DS Example: @Before and @ After

public void setUp() throws Exception {
‘New FileOutputStream and FilelnputStream /1 7 T 12 S 2 reent e s,
fIn = new FileInputStream{"/tmp/test.dat”);
}

[@Aftertest = enrter

public void tearDown() throws Exception {

fOut.close();
Close Streams ¢ ooy
DRTETE = 4eieteO;

}
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DS Example: Write out Data

Loop through three item in each array
or (int 1 = @; 1 < 3; 1+4) {
dos.writeDouble(ddatal[1]);
Vi COTEET e o SAET AT %o* rtelnt(idatol1);
dos.writeUTF(sdata[1]);
}
_Close the stream after writing ~ dos.close();
catch {(I0Exception e) {
Falifthere is an exception ¢ printseacelrocels;
fail("In testDataStream, write threw an exception);

}
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DS Example: Read Data Back In

try {

Continue reading until EOF thrown ~— wri1eCred

dtemp = dis.readDouble();
'Read data into temporary variables 577 DR Ee B
stemp = dis.readUTF();

dtemp, itemp, stemp);

}
ICAEIECF EXEEpBN BRABAIIII -~} cotch CEOrtsception o) ¢

System.out.println{"Reached End of File");
} cotch (I0Exception e) {
e.printStackTrace();
fail{("In testDataStream,”
+ " read threw an exception");

¥

try {
[Close Stream == 7 dic close0);

} cotch (I0Exception e) {
e.printStackTrace();
fail{("In testDataStream,”
+ "IClﬂSE threw an exception");
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Running Data Stream Example

try {
while(true) {
dtemp = dis.readDouble();
itemp = dis.readInt();
stemp = dis.readUTF();

dtemp, itemp, stemp);
}
} caotch (EOFException e} {

} cotch (I0Exception e) {

e.printStackTrace();
fail("In testDataStream,"

1 -
B console £ Ii-'- Problems @ + " read threw an exception");
<terminated> DataStreamTest [JUr ¥
Read: 1.000000, 1, one try {
Read: 2.100908, 2, two dis.close();
Read: 3.200008, 3, three I catch (I0Excepticn e) {
Reached End of File e.printStackTrace();

fail{("In testDataStream,”

I
+ “|clﬂse threw an exception");
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Object Streams

e |t Is possible to read and write objects

— ODbject that will be read and write must implement
the Serializable interface

— Objects input from ObjectinputStream
— Objects output to ObjectOutputStream

e The difficulty in printing objects is that they may
reference other objects

- How do you make sure that only one object is
written and all other refer to 1t?
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