Object Oriented Programming

Week 9 Part 1
File I/O

Lecture

Overview of Files
Using Tests to learn Java

Writing Text Files
Reading Text Files

Week 9

Overview of Files

Week 9

Overview of Files

* How they are accessed:

— sequential: data items must be accessed in the order in
which they are stored (ie. start at the beginning and
pass through all the items)

— direct (or random): items are accessed by specifying
their location

* How information is represented:
— text files: data 1s stored in character form.

— binary files: data 1s stored in internal binary form
(faster and more compact than text files).

Week 9

Types of Files

Summer.txt

Rough winds do shake the darling buds of May\n
And Summer’s lease hath all too short a date\n
Sometime too hot the eye of heaven shines, \n
And oft is his gold complexion dimmed, \n

And every failr from fair sometime declines...

Numbers.dat

Epdwl0Zé; 1
S@UE€9cal (3xLenf "x 2 (It»ligh : “1e®EYcMU4a: "gfd
N> | éce=L1...

Week 9

Text Files

* Text file
— human-readable with simple tools (Notepad, Ready, ...)
— Each line terminated by end-of-line marker (‘\n”)
— Example: . java files

* Easy to read and write text files

— Advantage of "streams" approach to I/0

— Use same classes and methods as System. in and
System.out

Week 9

Text Files: The File Class

* Need rile object for each file program uses

— File inFile = new File (”Summer.txt") ;

* Purpose
— Contains information about the file
- A‘“go-between” for the file
- Not the same as the file itself

Week 9

Text Files: The File Class

Methods In the rFile class

exists (): Tells if the file is there

canRead () : Tells if program can read the file
canWrite (): Tells if program can write to the file
delete (): Deletes the file

isDirectory (): Tells if file is really a directory
name

isFile (): Tells if the file is a file (not a directory)
length () : Tells the length of the file, in bytes

Week 9

Using Tests to Explore Java

Week 9

Learning from Tests

 To learn to use a new element of java, you
need to use it

e But, you risk forgetting how it works if you do
not use it frequently

e By putting your exploratory code in your test
directory, you can develop examples of how a
new feature works.

Week 9

10

Tests as Specifications

e Running unit tests show that your code works

e But the code in the tests indicate what your code does

— The assert statements tell the reader that value to expect
when making a calls

— They provide examples of working code

e Unit tests are specifications of the class, as well as
tests of the class

— What's more, they fail if the class does not meet the
specification

Week 9

11

Tests as specifications of Java

e You can add specifications of the crucial
features of Java to your tests.

 Create unit tests that provide examples of Java
classes you use

 Writing such a specification
— Gives you examples if as you build your code

— Gives you warning if Java specifications change
- Indicate to others what elements you are using

Week 9 12

Text Files: The File Class

Lets build tests of the following methods

exists (): Tells if the file is there

canRead () : Tells if program can read the file
canWrite (): Tells if program can write to the file
delete (): Deletes the file

isDirectory (): Tells if file is really a directory
name

isFile (): Tells if the file is a file (not a directory)
length () : Tells the length of the file, in bytes

Week 9 13

First we need to create a file

1 package oop.example;

i@ import static org.junit.Assert.*;[]

r}

public class ExampleFileI0Test {

18= @Before
11 public void setUp() throws Exception {
12 1
13
14 @Test
15 public woid testFile() {
{6 File f = new Filel"/tmp/test.txt");
17 1 4 |mport 'File' (java.io)
18 G Create class 'File' import static org.junit.Assert.”;
l’ i @ Change to 'FileLock' (java.nio.channels)

A

3
[

impaort java.io.File;
Change to 'Files' {java.nio.file)
Change to 'FileTime' (java.nio.file.attribute)
Change to 'FileView' (javax.swing.filechooser)
Change to 'Filter’ {org.junit.runner.manipulation)
iz Rename in file (382 R)
@ Fix project setup...

w
w
[
w

Press 'Tab’ from proposal table or elick for focus

Week 9

Import java.io.File

Week 9

package oop.example;

+import static org.junit.Assert.*;

import java.io.File;

import org.junit.Before;
import org.junit.Test;

public class ExampleFilelOTest {

eBefore
public void setUp() throws Exception {

}

@Test
public void testFile() {
File f = new File(" tmp/test.txt");

}

15

Test that a file was created

pockoge oop.example;
simport static org.junit.Assert.*;
import jova.ioc.File;

import org.junit.Before;
import org.junit.Test;

public class ExampleFileIOTest {

@Before
public wvoid setUp(} throws Exception {
}

@Test
public wvoid testFile{) {
File f = new File("/tmp/ test.txt");

Week 9 16

Test exists()

package ocop.example;
simport static org.junit.Assert.*;
import java.io.File;

import org.junit.Before;
import org.junit.Test;

public class ExampleFilelOTest {

BBefore
public void setUp() throws Exception {
1

@Test
public wvoid testFile() {
File f = new File("/tmp/test.txt");
assertTrue("A new file was created", f instanceof File);

}

@Test
public void testExists{) {

File f = new File("/tmp/test.txt");
1

Week 9 17

Refactor file creation to Before
method

package oop.example;
import static org.junit.Assert.*;
import java.io.File;

import org.junit.Before;
import org.junit.Test;

public class ExampleFileIOTest {
private File f = null;

@Before

public void setUp() throws Exception {
f = new File("/tmp/test.txt");

}

@Test
public void testFile() {
assertTrue("A new file was created", £ instanceof File);

}

@Test
public void testExists{) {
assertfalse("The new file does not yet exists", f.exists()});

}

¥ @ﬂup.&:ample.Exampl&File!DT&st [Runner: JUnit 4] {0.000 s}
ek testFile (0.000 s)
gE] testExists (0.000 s)

Week 9 18

Use createNewFile() to tests exists()

BTest
public void testExists() {
assertFalse("The new file does not yet exists", f.exists());

try {

f.createNewFile creates empty file , _ [-FregEe e
catch (I0Exception e) {
e.printStackTrace();

_ fail("In testExists, f.createNewFile threw I0 Exception™);
}

assertTrue("The new file exists now", f.exists());

}

Week 9 19

Problem: Fails Second Time

Runs: 2f2 B Errors: 0O B Failures: O

v E’Enup.&xa mple.ExampleFilelOTest [Runner: JUnit 4] (0.000 s)
g testFile (0.000 s)
g testExists (0.000 s)

Runs: 2/2 B Errors: 0O B Failures: 1

v @oup.aa mple.ExampleFilelOTest [Runner: JUnit 4] (0.001 s)
gl testFile (0.001 s)

= testExists (0.000 s)

Failure Trace

java.lang.AssertionError: The new file does not yet exists
at org.junit.Assert.fail(Assert.java:88)
at org.junit.Assert.assertTrue(Assert.java:41)

LIS m
o

Week 9 20

Solution: Clean up file after test

It is safe to delete f after every test because we
create it before every test.

Week 9

import org.junit.After;
import org.junit.Before;
import org.junit.Test;

public class ExompleFilelOTest {

private File f = null;

BBefare
public void setUp() throws Exception {
f = new File("/tmp/test.txt");

}

BAfter
public void tearDown() throws Exception {
f.delete();

}

BTest
public void testFile() {
assertTrue("A new File wos created",

21

Now It works every time

gE] testFile (0.000 s)

pE] testExists (0.001 s)

Runs: 2f2 B Errors: 0 B Failures: 0O

_ ﬁ cop.example.ExampleFilelOTest [Runner: JUnit 4] {0.000 s)

¢l testFile (0.000 s)
¢E] testExists (0.000 s)

Runs: 22 B Errors: 0O B Failures: 0O

v E?_J{mp.mmple.ExampleFilelDT&st [Runner: JUnit 4] {0,000 =)
gl testFile (0.000 s)
¢El testExists (0.000 s)

Week 9

22

ldempotence

Any time you take an action that changes the
state of the computer in a test, make sure to
undo that action before completing the test

Idempotence means that multiple applications

of a function or method should yield the same
results

Tests must be idempotent

Methods are guaranteed to be idempotent if
they change nothing while running

Week 9

23

Test File: tests exists() and delete()

import

import
import

import
import

import

public

static org.junit.Assert.*;

java.io.File;
java.lo.I0Exception;

org.junit.After;
org.junit.Before;

org.junit.Test;

class ExampleFileIOTest {

private File f = null;

@Before
public void setUp()} throws Exception {

}

f = new File("/tmp/test.txt");

BAfter
public void tearDown() throws Exception {

}

f.delete();

@Test
public wvoid testFile(} {

}

assertTrue("A new file was created", f instanceof File);

BTest
public void testExists() {

assertfFalse("The new file does not vet exists", f.exists());
try {

f.createNewFile();
} cotch (I0Exception e} {

e.printStackTrace();

fail{"In testExists, f.createNewFile threw I0 Exception”);
1

assertTrue("The new file exists now", f.exists());

Week 9

24

Writing to Text File

Week 9

25

Text Files: Writing to a Flle

* Before writing, make sure either...
— File doesn't exist

loutFile.exists ()

— Or file exists, and is writeable

outFile.exists () && outFile.canWrite ()

 Combine conditions

'loutFile.exists () || outFile.canWrite ()

Week 9

26

Text Files: Writing to a Flle

 Attach file to a stream

— PrintStream Object: knows how to write stream to
a file

Week 9

27

Creating a PrintStream from a file

/ PrintStream

File

~

Wee

k9

28

Text Files: Writing to a File

* Once finished writing to the file, close it

pWriter.close () ;

Week 9

29

Test Printing

@Test
public wvoid testWrite() {
PrintStream ps = null;
if (1f.exists() || f.canWrite()) {
try {
ps = new PrintStream(f);
} catch (I0Exception e} {
e.printStackTrace();
fail("In testWrite, FileWriter{f) threw an exception
+ "because either f 1s a directory "
+ "or f cannot be opened");
}
ps.print{"test");
ps.close();

Here we only test that we can open a file for printing
and print to the file. We do not test that the
character are actually in the file. We will test that
when we test read.

Week 9 30

Reading From Test Files

Week 9

31

Text Files: Reading from a File

* Before reading, make sure

— File exists and 1s readable
inFile.exists () && inFile.canRead()

 Attach file to a stream
~— FileReader object: knows how to read stream from a file
— Wrap FileReader object in Buf feredReader object

* BufferedReader works on files just like System.in

— read():read a single character, or -1 if EOF
— readLine (): read a line, or null if EOF

Week 9

32

/ BufferedReader ﬂ

e FileReader —

File

Week 9

33

Plan to Test File Reading

Copy the previous test to write “test” in file
Create a BufferedReader from the same file
Call readLine() on the BufferedReader
Check that we get “test” back

Week 9

34

Testing Reading

BTest
public woid TestRead() {

}

BufferedReader br = null;
PrintStream ps = null;
String = = null;

if (If.exists() || f.canWrite()) {
try {
ps = new PrintStream{f);
} catch (I0Exception e} {
g.printstackTrace();
fail("In testWrite, FileWriter(f) threw an exception "
+ "because either f is a directory "
+ "or f cannot be opened");

}
ps.print("test");
}
if (f.exists() && f.canRead(}) {
try {
br = new BufferedReader{new FileReader{f));
} catch (FileNotFoundException &) {
e.printStackTrace();
fail("In TestRead, FileReader threw an exception”
+ " because fi cannot be opened");
}
try {
= = br.readLine(};
} catch (I0Exception e} {
e.printStackTrace();
fail("In TestRead, readling() threw an exception”
+ " because an 170 error occurred");
}
}

assertEquals{"test", =);

Week 9 35

Note: error message from catch

 The error messages in the catch block are
adapted from the Java documentation

 The provide information on why the error might
have been thrown

 WWe can use that information as part of our
documentation of the feature we are using

— It indicates in the code, why the error might have
been thrown.

Week 9

36

Refactoring: Extracting Print from
Tests

e We now have identical code in two tests, and
Indication that we should refactor

e Eclipse has a function Refactor > Extract

Method that will turn a block of code Into a
method.

e |n addition we will add a parameter of the string
we want to write.

Week 9 37

Pull out PrintStream ps = null

e First we need to make the PrintStream we are
using a field because we use it in two places

New field

_——
g

Week 9

public class ExampleFileI0Test {

private File f = null;
private PrintStream ps = null;

38

Extract Method

@Test
public void testWrite() {
if i :
Revert File
Save AX NS

Ereﬂ an exception

Open Declaration F3 lrectory "
IRight elick = onen type Hierarchy -
1
}

Open Call Hierarchy AMEH

Show in Breadcrumb B

Quick Outline ®0

Quick Type Hierarchy #T

f::: f - ve Open With > |
" Showln TEW > - _ v
ole ."_ Problen W= Tasks Q Error Log [] Properties [} History
itStream ocop.ed Cut W

Copy W

Copy Qualified Name

Paste ey

Quick Fix 31

Source HS >

Refactor > Move... RV

Surround With >
Change Method Signature... ™ 3C
Extract Method... EM

References

Detlstins > Extract Interface...
Extract Superclass...

[= Add to Snippets... Use Supertype Where Possible... '
Pull Up...

Run As ¥ Push Down...

Debug As >

Validate Extract Class...

Create Snippet... Introduce Parameter Object...

T > El!,llFllllllllllllllllllllllllllllt_ 39

Give the

method a name

® @ Extract Method

Method name: | printToFile|

Access modifier: | | public () protected | | package @) private

"] Declare thrown runtime exceptions
| Generate method comment

| Replace additional occurrences of statements with method

Method signature preview:
private void printTeoFile()

Preview » Cancel

Week 9

40

Result

8Test

public void testWrite() {
printToFile();

}

private void printToFile() {
if (1f.exists() || f.canWrite(d) {
try {
ps = new PrintStream{f);
} catch (I0Exception e} {
e.printStackTrace();

fail{"In testWrite, FileWriter(f) threw an exception "
+ "because either f 1s a directory
+ "or f connot be opened");

}
ps.print{"test"};
ps.closa();

Week 9

41

Fix testRead() to use printToFile()

BTest

public void testRead() {
Buf feredReader br = null;
String s = null;

printTﬂFile{}ﬂ
if (f.exists() && f.canRead()) {
try {
br = new BufferedReader{new FileReader(f));
} cotch {(FileNotFoundException e) {
e.printStackTrace();
fail{"In TestRead, FileReader threw an exception”
+ " because f1i cannot be opened");

}
try {
= = br.readLine();
} cotch (I0Exception e) {
e.printStackTrace();
fail{"In TestRead, readlLing() threw an exception”
+ " because an I/0 error occurred");

}
}

assertEqual s{("test", s);

Week 9

42

Tests still run

v @ﬂﬂp.&:ample.ExampI&FiIelDT&st [Runner: JUnit 4] {0.000 s)
fE testWrite (0.000 s)
FE] testFile (0.000 s)
¢ testRead (0.000 s)
FE] testExists (0.000 s)

Week 9

43

Refactoring Improvements

e We have made the code clearer
— The name of the method indicates what it does

e We have reduce the amount of code

— The only line of code you can be certain has no bug
IS the one that isn't there.

 WWe can change the behavior of printing in all of
the tests at the same time

Week 9 44

Giving printToFile a parameter

e Let's change the method so we can pass in a
string to test.

e The advantage is we can pass a string in to be
written, then check that we get the same string

back
- The payoff is in testRead()

Week 9

45

Changing testWrite

BTest

public void testWrite() {
printToFile("test");

1

private void printToFile(5tring s) {
if (1f.exists() [f.canrite(D) {
try {
ps = new PrintStream{f);
} catch (I0Exception e} {
e.printStackTroce();
fail{"In testWrite, FileWriter({f) threw an exception "
+ "because either f is a directory "
+ "or f cannot be opened");
}
ps.print{sz);
ps.closel);

Week 9

46

Changing testRead()

@Test
public void testRead() {
BufferedReader br = null;

\Variables toread and write ¢,Lin9 st 2 Tns ne a et
String sRead = null;
if (F.exists() && f.canRead()) {

try {
br = new BufferedReader({new FileReader(f));

} catch (FileNotFoundException e) {
e.printStackTrace();
fail("In TestRead, FileReader threw an exception”

+ " because fi cannot be opened");
}
try {

Readreadsting Read o or - readline();

} catch (I0Exception e) {
e.printStackTrace();
fail{"In TestRead, readlLing() threw an exception”
+ " because an I/0 error occurred");

}
}

}

Week 9 47

Advantages of Parameter
refactoring

e testRead() Is clearer
— String written and String read are same

e \We may be able to use the method in other
tests

Week 9

48

Text Files: Reading from a File

* Can do same things we did with system.in
— Read numbers (NumberFormat)

— Read multiple “tokens” (stringTokenizer)

Week 9

49

sSource

Java I/O Summary

[l

Wiritas

| Frograrm

f

A stream

"

Week 9

readls
—_—

dest

50

Java I/O Summary

* Reading from Keyboard

— BufferedReader (InputStreamReader (System.in))

* Writing to Screen
— System.out

* Reading from File
— BufferedReader (FileReader (File))

* Writing to File

— PrintStream(File)

Week 9

51

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Types of Files
	Slide 6
	Text Files: The File Class
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Text Files: Writing to a File
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Java I/O Summary
	Slide 51

