
Object Oriented Programming

Week 9 Part 1
File I/O

Week 9 2

Lecture

● Overview of Files

● Using Tests to learn Java

● Writing Text Files

● Reading Text Files

Week 9 3

Overview of Files

Week 9 4

Overview of Files

• How they are accessed:
– sequential: data items must be accessed in the order in

which they are stored (ie. start at the beginning and
pass through all the items)

– direct (or random): items are accessed by specifying
their location

• How information is represented:
– text files: data is stored in character form.
– binary files: data is stored in internal binary form

(faster and more compact than text files).

Week 9 5

Types of Files

Summer.txt

Rough winds do shake the darling buds of May\n
And Summer’s lease hath all too short a date\n
Sometime too hot the eye of heaven shines,\n
And oft is his gold complexion dimmed,\n
And every fair from fair sometime declines...

Numbers.dat

Œpôw10Žé¿l
%®ú€9câÜ(3xLenfˆx¹ª(Ï½»¼øß:°µ�œŒÝçMÙ¾à:ˆqfõ
Ñ>|èœ=L¶...

Week 9 6

Text Files

• Text file
– human-readable with simple tools (Notepad, Ready, ...)
– Each line terminated by end-of-line marker (‘\n’)
– Example: .java files

• Easy to read and write text files
– Advantage of "streams" approach to I/O
– Use same classes and methods as System.in and
System.out

Week 9 7

Text Files: The File Class

● Need File object for each file program uses
– File inFile = new File(”Summer.txt");

● Purpose
– Contains information about the file
– A “go-between” for the file
– Not the same as the file itself

Week 9 8

Text Files: The File Class

● Methods in the File class
– exists(): Tells if the file is there
– canRead(): Tells if program can read the file
– canWrite(): Tells if program can write to the file
– delete(): Deletes the file
– isDirectory(): Tells if file is really a directory

name
– isFile(): Tells if the file is a file (not a directory)
– length(): Tells the length of the file, in bytes

Week 9 9

Using Tests to Explore Java

Week 9 10

Learning from Tests

● To learn to use a new element of java, you
need to use it

● But, you risk forgetting how it works if you do
not use it frequently

● By putting your exploratory code in your test
directory, you can develop examples of how a
new feature works.

Week 9 11

Tests as Specifications

● Running unit tests show that your code works

● But the code in the tests indicate what your code does
– The assert statements tell the reader that value to expect

when making a calls

– They provide examples of working code

● Unit tests are specifications of the class, as well as
tests of the class
– What's more, they fail if the class does not meet the

specification

Week 9 12

Tests as specifications of Java

● You can add specifications of the crucial
features of Java to your tests.

● Create unit tests that provide examples of Java
classes you use

● Writing such a specification
– Gives you examples if as you build your code

– Gives you warning if Java specifications change

– Indicate to others what elements you are using

Week 9 13

Text Files: The File Class

● Lets build tests of the following methods
– exists(): Tells if the file is there
– canRead(): Tells if program can read the file
– canWrite(): Tells if program can write to the file
– delete(): Deletes the file
– isDirectory(): Tells if file is really a directory

name
– isFile(): Tells if the file is a file (not a directory)
– length(): Tells the length of the file, in bytes

Week 9 14

First we need to create a file

Week 9 15

Import java.io.File

java.io.File

Week 9 16

Test that a file was created

Create a file and check that it was created

Week 9 17

Test exists()

The file does not yet exist

Week 9 18

Refactor file creation to Before
method

Removed file creation

Removed file creation

Created in @Before method

File f changed to field in class

Still works

Week 9 19

Use createNewFile() to tests exists()

f.createNewFile creates empty file

Throws IOException

Week 9 20

Problem: Fails Second Time

First Time

Second Time

The testExists test fails

Assertion that the file does not exists fails

Week 9 21

Solution: Clean up file after test
Import After tag

Create @After method

Delete f after every test

It is safe to delete f after every test because we
create it before every test.

Week 9 22

Now it works every time

First Time

Second Time

Third Time

Week 9 23

Idempotence

● Any time you take an action that changes the
state of the computer in a test, make sure to
undo that action before completing the test

● Idempotence means that multiple applications
of a function or method should yield the same
results

● Tests must be idempotent

● Methods are guaranteed to be idempotent if
they change nothing while running

Week 9 24

Test File: tests exists() and delete()

Week 9 25

Writing to Text File

Week 9 26

Text Files: Writing to a File

● Before writing, make sure either...
– File doesn't exist

!outFile.exists()

– Or file exists, and is writeable
outFile.exists() && outFile.canWrite()

● Combine conditions
!outFile.exists() || outFile.canWrite()

Week 9 27

Text Files: Writing to a File

● Attach file to a stream

– PrintStream object: knows how to write stream to
a file

Week 9 28

File

PrintStream

Creating a PrintStream from a file

Week 9 29

Text Files: Writing to a File

● Once finished writing to the file, close it

pWriter.close();

Week 9 30

Test Printing

Create a PrintStream from a File

Constructor throws error if directory

Or cannot be opened

Close file after printing

Here we only test that we can open a file for printing
and print to the file. We do not test that the
character are actually in the file. We will test that
when we test read.

Week 9 31

Reading From Test Files

Week 9 32

Text Files: Reading from a File

• Before reading, make sure
– File exists and is readable

inFile.exists() && inFile.canRead()

• Attach file to a stream
– FileReader object: knows how to read stream from a file
– Wrap FileReader object in BufferedReader object

• BufferedReader works on files just like System.in
– read(): read a single character, or -1 if EOF
– readLine(): read a line, or null if EOF

Week 9 33

File

FileReader

BufferedReader

Week 9 34

Plan to Test File Reading

● Copy the previous test to write “test” in file

● Create a BufferedReader from the same file

● Call readLine() on the BufferedReader

● Check that we get “test” back

Week 9 35

Testing Reading

Print test

Create a PrintStream from a File

Create BufferedReader form same File

Read a line from the file

Check that string read is string written

Week 9 36

Note: error message from catch

● The error messages in the catch block are
adapted from the Java documentation

● The provide information on why the error might
have been thrown

● We can use that information as part of our
documentation of the feature we are using
– It indicates in the code, why the error might have

been thrown.

Week 9 37

Refactoring: Extracting Print from
Tests

● We now have identical code in two tests, and
indication that we should refactor

● Eclipse has a function Refactor > Extract
Method that will turn a block of code into a
method.

● In addition we will add a parameter of the string
we want to write.

Week 9 38

Pull out PrintStream ps = null

New field

● First we need to make the PrintStream we are
using a field because we use it in two places

Week 9 39

Extract Method
Highlight code to extract

Right click

Refactor

Extract Method

Week 9 40

Give the method a name

Name method

Week 9 41

Result

Week 9 42

Fix testRead() to use printToFile()

Week 9 43

Tests still run

Week 9 44

Refactoring Improvements

● We have made the code clearer
– The name of the method indicates what it does

● We have reduce the amount of code
– The only line of code you can be certain has no bug

is the one that isn't there.

● We can change the behavior of printing in all of
the tests at the same time

Week 9 45

Giving printToFile a parameter

● Let's change the method so we can pass in a
string to test.

● The advantage is we can pass a string in to be
written, then check that we get the same string
back
– The payoff is in testRead()

Week 9 46

Changing testWrite()

Called with String parameter

String parameter added to signature

String parameter printed

Week 9 47

Changing testRead()

Variables to read and write

Print write string

Assert written and read are same

Read read string

Week 9 48

Advantages of Parameter
refactoring

● testRead() is clearer
– String written and String read are same

● We may be able to use the method in other
tests

Week 9 49

Text Files: Reading from a File

• Can do same things we did with System.in

– Read numbers (NumberFormat)

– Read multiple “tokens” (StringTokenizer)

Week 9 50

Java I/O Summary

Week 9 51

Java I/O Summary

● Reading from Keyboard
– BufferedReader(InputStreamReader(System.in))

● Writing to Screen
– System.out

● Reading from File
– BufferedReader(FileReader(File))

● Writing to File
– PrintStream(File)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Types of Files
	Slide 6
	Text Files: The File Class
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Text Files: Writing to a File
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Java I/O Summary
	Slide 51

