
Object Oriented Programming

Week 9 Part 1
File I/O
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Lecture

● Overview of Files

● Using Tests to learn Java

● Writing Text Files

● Reading Text Files
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Overview of Files
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Overview of Files

• How they are accessed:
– sequential:  data items must be accessed in the order in

which they are stored (ie. start at the beginning and
pass through all the items)

– direct (or random):  items are accessed by specifying
their location

• How information is represented:
– text files:  data is stored in character form.
– binary files:  data is stored in internal binary form

(faster and more compact than text files).
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Types of Files

Summer.txt

Rough winds do shake the darling buds of May\n
And Summer’s lease hath all too short a date\n
Sometime too hot the eye of heaven shines,\n
And oft is his gold complexion dimmed,\n
And every fair from fair sometime declines...

Numbers.dat
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Text Files

• Text file
– human-readable with simple tools (Notepad, Ready, ...)
– Each line terminated by end-of-line marker (‘\n’)
– Example: .java files

• Easy to read and write text files
– Advantage of "streams" approach to I/O
– Use same classes and methods as System.in and
System.out
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Text Files: The File Class

● Need File object for each file program uses
– File inFile = new File(”Summer.txt");

● Purpose
– Contains information about the file
– A “go-between” for the file
– Not the same as the file itself
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Text Files: The File Class

● Methods in the File class
– exists(): Tells if the file is there
– canRead(): Tells if program can read the file
– canWrite(): Tells if program can write to the file
– delete(): Deletes the file
– isDirectory(): Tells if file is really a directory

name
– isFile(): Tells if the file is a file (not a directory)
– length(): Tells the length of the file, in bytes
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Using Tests to Explore Java
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Learning from Tests

● To learn to use a new element of java, you
need to use it

● But, you risk forgetting how it works if you do
not use it frequently

● By putting your exploratory code in your test
directory, you can develop examples of how a
new feature works.
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Tests as Specifications

● Running unit tests show that your code works

● But the code in the tests indicate what your code does
– The assert statements tell the reader that value to expect

when making a calls

– They provide examples of working code

● Unit tests are specifications of the class, as well as
tests of the class
– What's more, they fail if the class does not meet the

specification
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Tests as specifications of Java

● You can add specifications of the crucial
features of Java to your tests.

● Create unit tests that provide examples of Java
classes you use

● Writing such a specification
– Gives you examples if as you build your code

– Gives you warning if Java specifications change

– Indicate to others what elements you are using
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Text Files: The File Class

● Lets build tests of the following methods
– exists(): Tells if the file is there
– canRead(): Tells if program can read the file
– canWrite(): Tells if program can write to the file
– delete(): Deletes the file
– isDirectory(): Tells if file is really a directory

name
– isFile(): Tells if the file is a file (not a directory)
– length(): Tells the length of the file, in bytes
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First we need to create a file
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Import java.io.File

java.io.File
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Test that a file was created

Create a file and check that it was created
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Test exists()

The file does not yet exist
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Refactor file creation to Before
method

Removed file creation

Removed file creation

Created in @Before method

File f changed to field in class

Still works



Week 9 19

Use createNewFile() to tests exists()

f.createNewFile creates empty file

Throws IOException
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Problem: Fails Second Time

First Time

Second Time

The testExists test fails

Assertion that the file does not exists fails
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Solution: Clean up file after test
Import After tag

Create @After method

Delete f after every test

It is safe to delete f after every test because we
create it before every test.
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Now it works every time

First Time

Second Time

Third Time
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Idempotence

● Any time you take an action that changes the
state of the computer in a test, make sure to
undo that action before completing the test

● Idempotence means that multiple applications
of a function or method should yield the same
results

● Tests must be idempotent

● Methods are guaranteed to be idempotent if
they change nothing while running
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Test File: tests exists() and delete()
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Writing to Text File
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Text Files: Writing to a File

● Before writing, make sure either...
– File doesn't exist

!outFile.exists()

– Or file exists, and is writeable
outFile.exists() && outFile.canWrite()

● Combine conditions
!outFile.exists() || outFile.canWrite()



Week 9 27

Text Files: Writing to a File

● Attach file to a stream

– PrintStream object: knows how to write stream to
a file
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File

PrintStream

Creating a PrintStream from a file
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Text Files: Writing to a File

● Once finished writing to the file, close it

pWriter.close();
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Test Printing

Create a PrintStream from a File

Constructor throws error if directory

Or cannot be opened

Close file after printing

Here we only test that we can open a file for printing
and print to the file. We do not test that the
character are actually in the file. We will test that
when we test read.
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Reading From Test Files
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Text Files: Reading from a File

• Before reading, make sure
– File exists and is readable

inFile.exists() && inFile.canRead()

• Attach file to a stream
– FileReader object: knows how to read stream from a file
– Wrap FileReader object in BufferedReader object

• BufferedReader works on files just like System.in
– read(): read a single character, or -1 if EOF
– readLine(): read a line, or null if EOF
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File

FileReader

BufferedReader
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Plan to Test File Reading

● Copy the previous test to write “test” in file

● Create a BufferedReader from the same file

● Call readLine() on the BufferedReader

● Check that we get “test” back
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Testing Reading

Print test

Create a PrintStream from a File

Create BufferedReader form same File

Read a line from the file

Check that string read is string written
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Note: error message from catch

● The error messages in the catch block are
adapted from the Java documentation

● The provide information on why the error might
have been thrown

● We can use that information as part of our
documentation of the feature we are using
– It indicates in the code, why the error might have

been thrown.
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Refactoring: Extracting Print from
Tests

● We now have identical code in two tests, and
indication that we should refactor

● Eclipse has a function Refactor > Extract
Method that will turn a block of code into a
method.

● In addition we will add a parameter of the string
we want to write.
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Pull out PrintStream ps = null

New field

● First we need to make the PrintStream we are
using a field because we use it in two places
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Extract Method
Highlight code to extract

Right click

Refactor

Extract Method
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Give the method a name

Name method
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Result
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Fix testRead() to use printToFile()
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Tests still run
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Refactoring Improvements

● We have made the code clearer
– The name of the method indicates what it does

● We have reduce the amount of code
– The only line of code you can be certain has no bug

is the one that isn't there.

● We can change the behavior of printing in all of
the tests at the same time
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Giving printToFile a parameter

● Let's change the method so we can pass in a
string to test.

● The advantage is we can pass a string in to be
written, then check that we get the same string
back
– The payoff is in testRead()
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Changing testWrite()

Called with String parameter

String parameter added to signature

String parameter printed
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Changing testRead()

Variables to read and write

Print write string

Assert written and read are same

Read read string
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Advantages of Parameter
refactoring

● testRead() is clearer
– String written and String read are same

● We may be able to use the method in other
tests
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Text Files: Reading from a File

• Can do same things we did with System.in

– Read numbers (NumberFormat)

– Read multiple “tokens” (StringTokenizer)
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Java I/O Summary



Week 9 51

Java I/O Summary

● Reading from Keyboard
– BufferedReader( InputStreamReader( System.in ))

● Writing to Screen
– System.out

● Reading from File
– BufferedReader( FileReader( File ))

● Writing to File
– PrintStream( File )
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