
Object Oriented Programming

Week 7 Part 1
Exceptions



Week 7 2

Lecture

● Overview of Exception

● How exceptions solve unexpected occurrences

● Catching exceptions



Week 7 3

Exceptions Overview



Week 7 4

Unexpected Occurances

● Unexpected things happen
– Example: “new” fails because out of memory

– They are difficult to program for

● When unexpected things happen either
– Halt the program and produce information to debug

– Alter the course of the program to avoid the problem



Week 7 5

Function return

● What does the function do when something
unexpected happens.

● You could return something like “null” or “false”,
but then the calling function would need to
expected these results.
– Just hands the problem to the calling function



Week 7 6

Exceptions are Problems

● It is difficult to get information on exceptions.
– They cause the program to fail, erasing all evidence

● In C, you are likely to see only “segmentation
fault”

● Debugging involves stepping through the
program line by line until you find the problem.
– The IDE makes this easier



Week 7 7

Exceptions are worse for users

● Exceptions are bad when writing programs

● They are even worse when they happen to
someone who is using the program

● The Java exception mechanism allows you to
recover from run-time errors.



Week 7 8

Java Exception Mechanism



Week 7 9

Java Exception Mechanism

● Java allows a function to “throw” an “exception”
or “error” when something unexpected happens

● The throw stops the function and transfers
control to the first function in the calling stack
that can “catch” the exception or error.

● The function that catches the exception or error
can perform recovery.



Week 7 10

Exceptions Defined

● A exception is an event that occurs during the
execution of a program that disrupts the normal flow
of instructions.
– https://docs.oracle.com/javase/tutorial/essential/exceptions

/index.html
 

● Exceptions are also called run-time errors
– They happen while the program is running

– Java reduced exceptions by providing ample static
checking

● i.e. Using the compiler to check before it runs

https://docs.oracle.com/javase/tutorial/essential/exceptions/index.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/index.html


Week 7 11

Recoverable and Unrecoverable

● Java distinguishes unrecoverable errors from
recoverable errors
– Unrecoverable errors are problems that should cause the

program to halt.
● E.g., out of memory.
● Conditions probably indicate the program cannot continue

– Recoverable errors are problems that the program can
handle

● E.g., file not found
● The user may have mistyped the name



Week 7 12

Exceptions and Errors

● Java defines exceptions to deal with
recoverable errors and errors to deal with
unrecoverable errors.

● Methods may throw either exceptions or errors.
– The must declare exceptions they throw, but not

errors.

– Java methods may throw errors
● e.g., divide by zero.



Week 7 13

Subclass of Throwable

● Both errors and exceptions may be thrown
– Throwing an error signals that the program should

end

– Throwing an exception indicates that the program
may continue



Week 7 14

Methods throw Exceptions

● Build in function throw exceptions

● The thrown exceptions are in turn thrown by the
method that calls them

● Methods should declare what exceptions the
throw



Week 7 15

Example: Throwing an Exception

Declares that it throws NumberFormatException

NumberFormatException thrown by parseInt



Week 7 16

Example: Running

String2Int return 1

String2Int throws exception

Output



Week 7 17

Capturing Example in Test Case

Doesn't throw exception

Does throw exception



Week 7 18

Results of Running Test Case

Doesn't throw exception

Throws exception

Doesn't throw exception

Exception thrown



Week 7 19

Catching a Thrown Object

● A “try” block defines a section of code in which
exceptions might be thrown

● A “try” block may be followed by a “catch”
statement that defines actions to do if an
exception occurs



Week 7 20

Example

Try block surrounds method

Output

Catches NumberFormatException

Prints message if caught

e.toString()



Week 7 21

JUnit tests functions throw exception

● You can test that a function throws an exception
in JUnit
– Put the expressions that should throw an exception

in a “try” bock.

– Catch the expected exception

– Test the message the exception carries



Week 7 22

JUnit Test Example

Try block. AssertEquals skipped

Catch. AssertEquals on message

The first AssertEquals is skipped because string2Int throws an exception halting the “try”
block.
The second AssertEquals fails because the “catch” block catches exception and it
carries the message 'For input string: “one”'



Week 7 23

JUnit Test Output


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

