
Object Oriented Programming

Week 4 Part 3
Generics

Week 3 2

Lecture

● What are generics

● Examples of the use of generics

Week 3 3

What are generics?

Week 3 4

Generics

● Java Generics let you specify types when
defining classes, interfaces and methods
– They use type parameters

● Specify types such as Dog rather than objects such as
Rex

● Generics are an example of parametric
polymorphism.
– The behavior of the method, class, etc is

determined by a parameter

Week 3 5

Java Generics

● Specified by angle brackets, “<>”
– e.g. ArrayList<Wolf> wolves;

● ArrayList uses Generics to indicate the type of
object stored
– The actual storage is the a reference to the

ArrayList class

– The ArrayList Class has a field that contains the
objects

Week 3 6

ArrayList uses Generics

● ArrayList uses Generics to indicate the type of object
stored
– The actual storage is the a reference to the ArrayList class

– An ArrayList has a field that contains the objects
● The storage of this field is an collection of references to the objects

contained
● All objects take the same space in the same
● The field may be an array, list, …, the programmer doesn't know or

care

● By using generics ArrayList can check that the object
being stored is the correct type

Week 3 7

Advantages of Generics (1)

● The biggest advantage of generics is the
compiler can do type checking
– E.g, you cannot accidentally assign a Deer to a

Pack of wolves.
● The compiler will catch the error

– Errors are possible because all references are the
same size, so it is possible to assign an object to
any array

Week 3 8

Advantages of Generics (2)
● A secondary advantage is you do not need to

cast variables when assigning from an array

● ArrayList without a type is a “raw type”
– Allowed for backward compatibility

– Requires explicit cast “(Wolf)” to assign to var

Warning: raw type

Error: will not compile

Warning: raw type

No Error w/ cast: will compile

Week 3 9

Generic Classes

Week 3 10

Defining Generic Classes

● ArrayList is a Generic Class

● A generic class, myClass is defined as
– public class myClass<T> { … }

– The T represents a class

– The symbol T may be used anywhere a type would
be used

● e.g., T myField;
● e.g., T getMyField() { … }

Week 3 11

Multiple type Generics

● May define a type based on multiple types
– e.g. public class myClass <T1, T2, T3, … Tn> { … }

● By convention types in generics are referred to by a single
upper case letter
– E: Element

– K: Key

– N: Number

– T: Type

– V: Value

– S, U, V: additional Types

Week 3 12

Common Multiple Type Generics

● Multiple Type Generics appear most commonly
in key value pairs

● To store pairs we might generate a class:
– e.g., public class OrderedPair<K V> { … }

● We use the class by adding classes for K and V
– e.g., OrderedPair<Integer, String> op;

Week 3 13

Multiple Type Generic Example

● OrderedPair ● Using OrderedPair

● Output

Week 3 14

Generic Methods

Week 3 15

Generic Methods

● We can create generic methods outside a
generic class

● For example, we can create a print method in
an Output class that can print a OrderedPair

Week 3 16

Generic Methods Example

● Output class ● Calling print

● Output

Week 3 17

Static Generic Methods

Week 3 18

Static print method

● To use the Output class as defined, we need to
create an Output object.

● The object adds nothing to the behavior of the
print method
– A better solution is to make the method static

● A static method can be called from the class,
not from an object of the class

Week 3 19

Changing print to static

● Output class

● Calling Output.print

● Output

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

