
Object Oriented Programming

Week 4 Part 2
ArrayList
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Lecture

● Reason to use ArrayList

● Using ArrayList
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Reason to use ArrayList
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1-many; many-many

● We use an array to represent 1-many and many
to many relationships

● However, we need to indicate how many items
are in an array before we use it

● Therefore, we need to
– Keep track of the end of the array to add element

– Extend the array when we run out of space
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ArrayList

● Fortunately, ArrayList provides a type that does
everything necessary

● ArrayList is a class
– It has methods to insert and retrieve elements

● These methods are executed by the square bracket
operator just like arrays

– But the array expands when it needs to



Week 3 6

Refactoring Pack to use ArrayList
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Example: Pack

● Pack

Ordinary Array

Initialized in Constructor: without Wolf

To add a wolf, you need to copy the array
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Refactor to use ListArray

● We do not need a new test to refactor
– We want the behavior to remain the same

– No new test because no new behavior

● We need to add java.util.ArrayList
– Specifies package “java.util”

– Specifies class to include “ArrayList”
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Refactor to use ListArray: Pack
● Pack

Import ArrayList

Declare ArrayList<Wolf> field

Initialize ArrayList<Wolf> from array

Create ArrayList<Wolf>

Return array of wolves for getMember()

Add a new Wolf to ArrayList
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Import Class

● “import java.util.ArrayList
– Import causes the ArrayList class to be added to the

classes the program can use
● i.e., it adds this class to animals

● The class lives in the package java.util
– The java.util package contains common extension

to Java
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Declare ArrayList variable

● The ArrayList class is a generic class
– It takes a type in angle brackets

– ArrayList<Wolf> can only contain wolves.
● The compiler will complain if you try to put something else in it.

● This is an example of Parametric Polymorphism
– We indicate what inheritance constrain as a parameter

● Here <Wolf>

– It is called a generic class in Java.
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Initialize ArrayList<Wolf>

● As with any other variable, we need to initialize
the variable before we can use it.
– As with other variables, we initialize it in the

constructor

● To initialize use ArrayList<Wolf> just as any
other class
– I.e, members = new ArrayList<Wolf>()

– The name of the class is the name of the
constructor
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Supporting Existing Interface (1)

● Currently Pack takes an array of wolves as a parameter to
the constructor and returns an array as the result of
getMember.

● When refactoring, we do not want to change behavior at all
– We are constrained to working in the class itself

● Changing the behavior of an existing class is a risky
operation
– It may have effect far from the class we are working on

● If we want to change the behavior of an existing class we
need to know everywhere the class is used.
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Supporting Existing Interface (2)

● If we want to change the behavior of an existing
class we need to know everywhere the class is used.

● Here we need to translate from array to ArrayList in
two places
– We need to translate in the constructor that takes an

array
● i.e., Pack(Wolf wolves[])

– We need to translate the getter for members
● i.e. Wolf[] getMembers()
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Initializing from an array (1)

● An ArrayList can be initialized from a Collection
(an interface, which is like a class)
– An array is not a Collection

– We can create a List, which is a Collection, using
the asList method of Arrays

– The asList method is a static method
● It exits as part of the Array class
● It is called form the class name, not an object
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Initializing from an array (2)

● We pass the array to the asList method to
create a List, which is a Collection
– We then use the List, that the asList method

produces to create the ArrayList<Wolf>

– We then assign the newly created ArrayList<Wolf>
to members
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Return array for getMembers

● ArrayList has a method to translate to an array
– i.e., members.toArray(temp)

– This method takes the array passed in as a
parameter and fills it with the elements in the
ArrayList

– If the array is too small, it expands it. If it is too
large, it puts and null at the end of the array.

● Note that the length field of the array will not indicate the
number of elements if the array is too big.

● We return the array created
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Changing the interface to Pack
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Changing the Interface

● Changing the interface to a class is a change in
the behavior of a class
– Before we change the behavior of a class, we must

● Make sure we know ever place that class is being used
● Create a test for the new behavior

● Since Pack is only used in the Test, now is the
time to update the interface
– We write a new Test that uses ArrayList
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Changing the test: TestPack
● TestPack

Import ArrayList

Test second constructor

Constructor and member return
ArrayList<Wolf>

AssertEquals needs to be changed to
ArrayList method gets(0) from [0]
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Changing: Pack

Change Constructor to accept ArrayList

Change getMembers to return ArrayList
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New Error Appears

● When we change getMembers, we discover
that another class TestWolf, used the class
– This is the danger of changing the interface to a

class 

Error in TestWolf.java
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The Problem

● The problem is we are initializing the Pack from
an array of wolves.

● We change use the zero parameter constructor
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Update Area

● TestArea ● Area
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Update Region

● TestRegion ● Region
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Update Territory

● TestTerritory ● Territory
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Update TestMarks

● TestMarks creates a
territory from an array
of locations
– Need to change to an

ArrayList

● NewTestMarks

Change to TestMarks
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Valediction

● Ay seem like the change to ArrayList was a lot
of effort, but
– Most of the effort was just fixing syntactic errors,

which are much easier to change

– Early changes are much easier that later changes
● If it looks like a change is going to improve the code

clarity, it is usually worth doing

– The longer changes are delayed, the longer it takes
to implement them
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