
Object Oriented Programming

Week 4 Part 2
ArrayList



Week 3 2

Lecture

● Reason to use ArrayList

● Using ArrayList



Week 3 3

Reason to use ArrayList



Week 3 4

1-many; many-many

● We use an array to represent 1-many and many
to many relationships

● However, we need to indicate how many items
are in an array before we use it

● Therefore, we need to
– Keep track of the end of the array to add element

– Extend the array when we run out of space



Week 3 5

ArrayList

● Fortunately, ArrayList provides a type that does
everything necessary

● ArrayList is a class
– It has methods to insert and retrieve elements

● These methods are executed by the square bracket
operator just like arrays

– But the array expands when it needs to



Week 3 6

Refactoring Pack to use ArrayList



Week 4 7

Example: Pack

● Pack

Ordinary Array

Initialized in Constructor: without Wolf

To add a wolf, you need to copy the array



Week 4 8

Refactor to use ListArray

● We do not need a new test to refactor
– We want the behavior to remain the same

– No new test because no new behavior

● We need to add java.util.ArrayList
– Specifies package “java.util”

– Specifies class to include “ArrayList”



Week 4 9

Refactor to use ListArray: Pack
● Pack

Import ArrayList

Declare ArrayList<Wolf> field

Initialize ArrayList<Wolf> from array

Create ArrayList<Wolf>

Return array of wolves for getMember()

Add a new Wolf to ArrayList



Week 4 10

Import Class

● “import java.util.ArrayList
– Import causes the ArrayList class to be added to the

classes the program can use
● i.e., it adds this class to animals

● The class lives in the package java.util
– The java.util package contains common extension

to Java



Week 4 11

Declare ArrayList variable

● The ArrayList class is a generic class
– It takes a type in angle brackets

– ArrayList<Wolf> can only contain wolves.
● The compiler will complain if you try to put something else in it.

● This is an example of Parametric Polymorphism
– We indicate what inheritance constrain as a parameter

● Here <Wolf>

– It is called a generic class in Java.



Week 4 12

Initialize ArrayList<Wolf>

● As with any other variable, we need to initialize
the variable before we can use it.
– As with other variables, we initialize it in the

constructor

● To initialize use ArrayList<Wolf> just as any
other class
– I.e, members = new ArrayList<Wolf>()

– The name of the class is the name of the
constructor



Week 4 13

Supporting Existing Interface (1)

● Currently Pack takes an array of wolves as a parameter to
the constructor and returns an array as the result of
getMember.

● When refactoring, we do not want to change behavior at all
– We are constrained to working in the class itself

● Changing the behavior of an existing class is a risky
operation
– It may have effect far from the class we are working on

● If we want to change the behavior of an existing class we
need to know everywhere the class is used.



Week 4 14

Supporting Existing Interface (2)

● If we want to change the behavior of an existing
class we need to know everywhere the class is used.

● Here we need to translate from array to ArrayList in
two places
– We need to translate in the constructor that takes an

array
● i.e., Pack(Wolf wolves[])

– We need to translate the getter for members
● i.e. Wolf[] getMembers()



Week 4 15

Initializing from an array (1)

● An ArrayList can be initialized from a Collection
(an interface, which is like a class)
– An array is not a Collection

– We can create a List, which is a Collection, using
the asList method of Arrays

– The asList method is a static method
● It exits as part of the Array class
● It is called form the class name, not an object



Week 4 16

Initializing from an array (2)

● We pass the array to the asList method to
create a List, which is a Collection
– We then use the List, that the asList method

produces to create the ArrayList<Wolf>

– We then assign the newly created ArrayList<Wolf>
to members



Week 3 17

Return array for getMembers

● ArrayList has a method to translate to an array
– i.e., members.toArray(temp)

– This method takes the array passed in as a
parameter and fills it with the elements in the
ArrayList

– If the array is too small, it expands it. If it is too
large, it puts and null at the end of the array.

● Note that the length field of the array will not indicate the
number of elements if the array is too big.

● We return the array created



Week 3 18

Changing the interface to Pack



Week 3 19

Changing the Interface

● Changing the interface to a class is a change in
the behavior of a class
– Before we change the behavior of a class, we must

● Make sure we know ever place that class is being used
● Create a test for the new behavior

● Since Pack is only used in the Test, now is the
time to update the interface
– We write a new Test that uses ArrayList



Week 4 20

Changing the test: TestPack
● TestPack

Import ArrayList

Test second constructor

Constructor and member return
ArrayList<Wolf>

AssertEquals needs to be changed to
ArrayList method gets(0) from [0]



Week 4 21

Changing: Pack

Change Constructor to accept ArrayList

Change getMembers to return ArrayList



Week 4 22

New Error Appears

● When we change getMembers, we discover
that another class TestWolf, used the class
– This is the danger of changing the interface to a

class 

Error in TestWolf.java



Week 4 23

The Problem

● The problem is we are initializing the Pack from
an array of wolves.

● We change use the zero parameter constructor



Week 4 24

Update Area

● TestArea ● Area



Week 4 25

Update Region

● TestRegion ● Region



Week 4 26

Update Territory

● TestTerritory ● Territory



Week 4 27

Update TestMarks

● TestMarks creates a
territory from an array
of locations
– Need to change to an

ArrayList

● NewTestMarks

Change to TestMarks



Week 4 28

Valediction

● Ay seem like the change to ArrayList was a lot
of effort, but
– Most of the effort was just fixing syntactic errors,

which are much easier to change

– Early changes are much easier that later changes
● If it looks like a change is going to improve the code

clarity, it is usually worth doing

– The longer changes are delayed, the longer it takes
to implement them


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

