
Object Oriented Programming

Week 4 Part 1
Relationships between Classes

Week 4 2

Lecture

● What are relationships

● Types of relationships

● UML description of relationships

● Implementing relationships in Java

Week 4 3

What are Relationships in OOP?

Week 4 4

Classes and Relationships

● Objects let us reason about programs as if they were
constructed with things.

● Classes let us define types of objects.
– Relationships show the way types of objects interaction

● Generalization is only one type of relationship
– It indicates is a kind of

● A dog is a kind of mammal
● A mammal is a kind of animal

– It is represented in Java by inheritance

Week 4 5

Other types of relationships

● There are many other types of relationships.

● Three of these are
– Association: a general type of relationship

● E.g. a dog chases a cat

– Aggregation: a group of individual objects forming another
object

● E.g. A class: each student is an individual

– Composition: a group of objects that exist only to comprise
another object

● E.g. A student: a student has test scores and grades, but these have
no existence without the student

Week 4 6

Associations

Week 4 7

Associations

● Associations capture all of the myriad ways two
types of things may relate to each other:
– For example

● A Student studies a Subject
● A Car drives on a Road
● A Rock lies on the ground

● Association capture relationships that define a model
– They exists as a representation of the world to be

captured

Week 4 8

Associations have Properties

● We can categorize associations between
classes such as
– Directionality

– Cardinality

● The properties a general characteristics of the
associate; not properties of the particular
relationship

● The properties indicate how they are to be
implemented

Week 4 9

Properties of Associations

● Directionality
– Uni-directional: One object may access the other, but the other

cannot

– Bi-directional: both objects can access each other

● Cardinality
– 1-1: each object is associated with one other object

● E.g., A Student attempts A Test

– 1-*: each object is associated with many other objects
● E.g., A Student receives Grades

– *-*: many objects are associate with many other objects
● E.g., Students take Classes

Week 4 10

Properties depend on the Model

● Associations model relationships in the real world

● The relationships in our model are simplifications
– The type of association depends on the aspect of the world

we are trying to capture

– For example
● A Student takes a Class: is a 1-1 relationship perhaps to capture

progress
● A Student takes Classes: is a 1-* relationship that perhaps captures

a schedule
● Students take Classes: is a *-* relationship that perhaps captures

timings

Week 4 11

Example: Wolves

● As an example, lets create a model of wolves.
– Perhaps to create a program to track wild wolves.

● We capture facts about wolves
– Wolves form packs

– Wolves mark territory

– Wolves hunt mice

– Wolf Packs defend territory

– Wolf Packs hunt deer

– Territories are in regions

Week 4 12

Wolf Model

Wolf Pack

Mouse

Deerforms hunts

hunts

Territory

Deer

Region

holds
marks

H
a

s

Lives in

Lives in

Week 4 13

Wolf hunts Mouse

● Wolves as a class hunt mice as a class, but any particular
hunt is a single wolf
– Wolf hunts mouse is a 1-1 relationship.

● It may be modeled as a uni-directional relationship
– Wolf hunts Mouse

– Indicates that in this model the Mouse need know nothing of the
wolf

● If may be modeled as a bi-directional relationship
– Wolf hunts Mouse and Mouse is hunted by Wolf

– Indicates that the Mouse in the model needs to know of the wolf

Week 4 14

Mouse and Wolf tests

● TestWolf ● Test Mouse

Week 4 15

Base Wolf and Mouse Classes

● Wolf ● Mouse

Week 4 16

Test for Uni-Direction Association

● The Uni-directional association can be
implemented as
– A new field to hold the mouse being hunted

– Getters and setters for the field

● Add a new test, testHunts(), to TestWolf.java

Week 4 17

Add Field and Method from Test

● Field ● Methods

● The association is
– One direction: the Mouse object cannot access

the Wolf object that is hunting it

– 1-*:
● The Mouse is hunted by only one wolf
● The Wolf hunts many mice.

Week 4 18

Adding Pack

● A Pack is a group of wolves

● We will create a new object called Pack which
– Contains a number of wolves

– Each wolf has a dominance position in the Pack

– Relationship between the Wolves and Packs is Many to one
● One Wolf is only in one Pack
● One Pack may have many wolves.

– Relationship between wolves and packs is bi-directional
● Each pack knows which wolves are in it
● Each wolf knows which pack it is a member of

Week 4 19

Bi-directional link

● The Wolf will have a public method which return
the pack to which it belongs
– The Wolf will be born into a Pack

● The constructor will set the Pack

● The Pack will have a public method which
returns the members of the Pack
– The Pack consists of the Wolves

● The construction will set initial Wolves in the Pack
● A public method will allow an additional Wolf to be added

Week 4 20

TestPack and Pack

● TestPack ● Pack

Week 4 21

Directionality

● So far, the implementation is only uni-directional
– The Pack knows the members, but the Wolf does not know

what Pack it is a member of

– To implement bi-directionality, we need to give the Wolf
access to its Pack

● The Wolf is born into a Pack, so we will alter the
constructor to insert the Wolf

● A Wolf may change its Pack, so we will need to add a
setter

Week 4 22

First Refactor Pack

● To create a single Wolf with a new Pack, we
need to add a Pack with no members.

● This shows a flaw in our original design
– We need to create an empty pack, then add wolves

● We will refactor to add a constructor with no
wolves.

● Finally, we will need to be able to add individual
wolves

Week 4 23

Refactor TestPack and Pack

● TestPack ● Pack

Week 4 24

Java Arrays

● Java Arrays differ
from C
– They are objects

● The have a length
member

● For loops can rely on
always having the
length of the array

Week 4 25

Now we can add Bi-directionality

● Add a new field: memberOf

● Add a new constructor: Wolf(String, Pack)

● Add a getter: getMemberOf()

● Add a setter: setMemberOf(Pack)

Week 4 26

Add Bi-directionality to Wolf

● Add to TestWolf ● Add to Wolf

...

Week 4 27

Adding Deer and Dear hunting

● Packs hunt deer, but individuals wolves do not
– Deer are too hard for an individual to catch

– They are too big for an individual to eat

● There is a hunts associate between the pack
and the deer

● The hunts associate is a 1-* uni-directional
associate, just as is the hunts association
between Wolf and Mouse
– A single Pack hunts Deer

Week 4 28

Adding Deer

● TestDeer ● Deer

Week 4 29

Updating Pack

● Add to TestPack ● Add to Pack

● Refactor to extract
Pack constructor

...

Week 4 30

Adding Territory and Region

● The intention is that the Territory is the region inhabited by a
Pack; a Region is an area under study.

● There can be many territories in a region, and a single territory
can be in many regions
– The relationship between Region and Territory is many to many (*-*)

● Both the Territory and Region are Areas, so we will use a
hierarchy to define them
– The Area is an array of locations defining the boundary of the ares,

so we need to define Location also.

● A Location is a longitude and lattitude

Week 4 31

Add Location

● TestLocation ● Location

Week 4 32

Add Area

● Add TestArea ● Add Area

Week 4 33

Update AllTests

Week 4 34

Add Territory and Regions

● Now that we have added Location and Regions
we can add Territory and Region

● The base classes just extend Area
– By making them classes, the compiler can check for

semantic errors

Week 4 35

Territory

● TestTerritory ● Territory

Week 4 36

Region

● TestRegion ● Region

Week 4 37

Representing Many to Many
Relationships

● We will represent the many to many class using
two arrays
– An array of Territories in Region will represent all of

the territories in that region

– An array of Regions in Territory will represent all of
the regions that this particular territory overlaps

Week 4 38

Example of Regions and Territories

● There are two territories and two regions in this example
– Territory1 is entirely in Region1

– Territory2 is partially in Region1 and partially in Regions 2

– We need to represent that Territory2 is in Region1 and Region2

– We need to represent that Region1 contains Territory1 and Territory2

Region 1 Region 1

Territory 1 Territory 2

Week 4 39

Many to Many

● Territory ● Region

Week 4 40

Territory

● TestTerritory ● Territory

Week 4 41

Region

● TestRegion ● Region

Week 4 42

Using Classes to Represent
Associations

● Sometimes Associations themselves may have
properties
– For example a Wolf marks a Territory at a certain

time

– To capture these times we need them in the
association

– To do this we can create an object called a Mark

Week 4 43

Marks
● TestMarks ● Marks

Week 4 44

Aggregation and Composition

Week 4 45

Aggregation and Composition

● The Pack is an association called and aggregation
– An aggregation is a group of objects that have an existence outside the

object

– If the Pack goes away, the individual wolves do not

● Another type of group association is called a composition
– A composition consist of objects that do go away if the object does.

– For example, a Wolf may be a composition of body parts
● A wolf has a leg, but the leg is part of the wolf

● As with all associations, the type of association depends on the
model.
– Theoretically a wolf leg could be transplanted to another wolf, but our model

is about hunting and packs, not surgery

Week 4 46

UML descriptions of relationships

Week 4 47

UML Relationship Symbols

● Generalization
– Represented by

Inheritance in Java

– Arrow points to
superclass

– Base of arrow on
subclass

Generalization

Association

Aggregation

Composition

Week 4 48

UML Association

● The arrow on the uni-directional association points to the class
to the object of the association
– E.g. Wolf hunts Mouse points to Mouse

● Bi-directory associations have no arrows
– E.g. Territory has Regions and Region as Territories

● Cardinality is designated either by an integer or a range of
integer
– The integer represents that a particular number of objects is required

for the association

– The range indicates that any number of objects within the range may
be required.

Week 4 49

Cardinality Examples

● Integers
– One Pack holds one Territory

● Ranges
– Between 2 and any number of Wolves for a Pack

– A Wolf hunts between 0 and any number of Mice

– A Pack hunts between 0 and any number of Deer

– A Territory has between 0 and any number of Regions and
vice versa

– A Wolf marks between 0 and any number of Territories

Week 4 50

UML Aggregation

● The Pack is an aggregation of Wolves

● The open diamond on the Aggregation points to
the aggregation
– E.g., forms is an aggregation

– Between 2 and any number of wolves aggregate
into a Pack

– We do not call a single wolf a pack

Week 4 51

Aggregation vs Composition

● Aggregation is weaker than composition

● Objects in a composition have no existence
outside the composition

● For example
– A Car is a composition of body, wheels, engine …

– A Pond may hold an aggregation of ducks.

Week 4 52

Wolf Model

Wolf Pack

Mouse

Deerforms hunts

hunts

Territory

Deer

Region

holds
marks
H

a
s

2..* 1

1

1

1

0..*

0..*

0..*

1

1

0..*

1..*

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

