
Object Oriented Programming

Week 4 Part 1
Relationships between Classes
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Lecture

● What are relationships

● Types of relationships

● UML description of relationships

● Implementing relationships in Java
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What are Relationships in OOP?
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Classes and Relationships

● Objects let us reason about programs as if they were
constructed with things.

● Classes let us define types of objects.
– Relationships show the way types of objects interaction

● Generalization is only one type of relationship
– It indicates is a kind of

● A dog is a kind of mammal
● A mammal is a kind of animal

– It is represented in Java by inheritance
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Other types of relationships

● There are many other types of relationships.

● Three of these are
– Association: a general type of relationship

● E.g. a dog chases a cat

– Aggregation: a group of individual objects forming another
object

● E.g. A class: each student is an individual

– Composition: a group of objects that exist only to comprise
another object

● E.g. A student: a student has test scores and grades, but these have
no existence without the student
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Associations
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Associations

● Associations capture all of the myriad ways two
types of things may relate to each other:
– For example

● A Student studies a Subject
● A Car drives on a Road
● A Rock lies on the ground

● Association capture relationships that define a model
– They exists as a representation of the world to be

captured



Week 4 8

Associations have Properties

● We can categorize associations between
classes such as
– Directionality

– Cardinality

● The properties a general characteristics of the
associate; not properties of the particular
relationship

● The properties indicate how they are to be
implemented
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Properties of Associations

● Directionality
– Uni-directional: One object may access the other, but the other

cannot

– Bi-directional: both objects can access each other

● Cardinality
– 1-1: each object is associated with one other object

● E.g., A Student attempts A Test

– 1-*: each object is associated with many other objects
● E.g., A Student receives Grades

– *-*: many objects are associate with many other objects
● E.g., Students take Classes
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Properties depend on the Model

● Associations model relationships in the real world

● The relationships in our model are simplifications
– The type of association depends on the aspect of the world

we are trying to capture

– For example
● A Student takes a Class: is a 1-1 relationship perhaps to capture

progress
● A Student takes Classes: is a 1-* relationship that perhaps captures

a schedule
● Students take Classes: is a *-* relationship that perhaps captures

timings
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Example: Wolves

● As an example, lets create a model of wolves.
– Perhaps to create a program to track wild wolves.

● We capture facts about wolves
– Wolves form packs

– Wolves mark territory

– Wolves hunt mice

– Wolf Packs defend territory

– Wolf Packs hunt deer

– Territories are in regions
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Wolf Model

Wolf Pack

Mouse

Deerforms hunts

hunts

Territory

Deer

Region

holds
marks

H
a

s

Lives in

Lives in
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Wolf hunts Mouse

● Wolves as a class hunt mice as a class, but any particular
hunt is a single wolf
– Wolf hunts mouse is a 1-1 relationship.

● It may be modeled as a uni-directional relationship
– Wolf hunts Mouse

– Indicates that in this model the Mouse need know nothing of the
wolf

● If may be modeled as a bi-directional relationship
– Wolf hunts Mouse and Mouse is hunted by Wolf

– Indicates that the Mouse in the model needs to know of the wolf
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Mouse and Wolf tests

● TestWolf ● Test Mouse
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Base Wolf and Mouse Classes

● Wolf ● Mouse
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Test for Uni-Direction Association 

● The Uni-directional association can be
implemented as
– A new field to hold the mouse being hunted

– Getters and setters for the field

● Add a new test, testHunts(), to TestWolf.java
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Add Field and Method from Test

● Field ● Methods

● The association is
– One direction: the Mouse object cannot access

the Wolf object that is hunting it

– 1-*:
● The Mouse is hunted by only one wolf
● The Wolf hunts many mice.
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Adding Pack

● A Pack is a group of wolves

● We will create a new object called Pack which
– Contains a number of wolves

– Each wolf has a dominance position in the Pack

– Relationship between the Wolves and Packs is Many to one
● One Wolf is only in one Pack
● One Pack may have many wolves.

– Relationship between wolves and packs is bi-directional
● Each pack knows which wolves are in it
● Each wolf knows which pack it is a member of
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Bi-directional link

● The Wolf will have a public method which return
the pack to which it belongs
– The Wolf will be born into a Pack

● The constructor will set the Pack

● The Pack will have a public method which
returns the members of the Pack
– The Pack consists of the Wolves

● The construction will set initial Wolves in the Pack
● A public method will allow an additional Wolf to be added
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TestPack and Pack

● TestPack ● Pack
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Directionality

● So far, the implementation is only uni-directional
– The Pack knows the members, but the Wolf does not know

what Pack it is a member of

– To implement bi-directionality, we need to give the Wolf
access to its Pack

● The Wolf is born into a Pack, so we will alter the
constructor to insert the Wolf

● A Wolf may change its Pack, so we will need to add a
setter
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First Refactor Pack

● To create a single Wolf with a new Pack, we
need to add a Pack with no members.

● This shows a flaw in our original design
– We need to create an empty pack, then add wolves

● We will refactor to add a constructor with no
wolves.

● Finally, we will need to be able to add individual
wolves
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Refactor TestPack and Pack

● TestPack ● Pack
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Java Arrays

● Java Arrays differ
from C
– They are objects

● The have a length
member

● For loops can rely on
always having the
length of the array
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Now we can add Bi-directionality

● Add a new field: memberOf

● Add a new constructor: Wolf(String, Pack)

● Add a getter: getMemberOf()

● Add a setter: setMemberOf(Pack)
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Add Bi-directionality to Wolf

● Add to TestWolf ● Add to Wolf

...
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Adding Deer and Dear hunting

● Packs hunt deer, but individuals wolves do not
– Deer are too hard for an individual to catch

– They are too big for an individual to eat

● There is a hunts associate between the pack
and the deer

● The hunts associate is a 1-* uni-directional
associate, just as is the hunts association
between Wolf and Mouse
– A single Pack hunts Deer
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Adding Deer

● TestDeer ● Deer
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Updating Pack

● Add to TestPack ● Add to Pack

● Refactor to extract
Pack constructor

...
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Adding Territory and Region

● The intention is that the Territory is the region inhabited by a
Pack; a Region is an area under study.

● There can be many territories in a region, and a single territory
can be in many regions
– The relationship between Region and Territory is many to many (*-*)

● Both the Territory and Region are Areas, so we will use a
hierarchy to define them
– The Area is an array of locations defining the boundary of the ares,

so we need to define Location also.

● A Location is a longitude and lattitude
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Add Location

● TestLocation ● Location
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Add Area

● Add TestArea ● Add Area
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Update AllTests
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Add Territory and Regions

● Now that we have added Location and Regions
we can add Territory and Region

● The base classes just extend Area
– By making them classes, the compiler can check for

semantic errors
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Territory

● TestTerritory ● Territory
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Region

● TestRegion ● Region
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Representing Many to Many
Relationships

● We will represent the many to many class using
two arrays
– An array of Territories in Region will represent all of

the territories in that region

– An array of Regions in Territory will represent all of
the regions that this particular territory overlaps
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Example of Regions and Territories

● There are two territories and two regions in this example
– Territory1 is entirely in Region1

– Territory2 is partially in Region1 and partially in Regions 2

– We need to represent that Territory2 is in Region1 and Region2

– We need to represent that Region1 contains Territory1 and Territory2

Region 1 Region 1

Territory 1 Territory 2
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Many to Many

● Territory ● Region
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Territory

● TestTerritory ● Territory
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Region

● TestRegion ● Region
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Using Classes to Represent
Associations

● Sometimes Associations themselves may have
properties
– For example a Wolf marks a Territory at a certain

time

– To capture these times we need them in the
association

– To do this we can create an object called a Mark
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Marks
● TestMarks ● Marks
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Aggregation and Composition
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Aggregation and Composition

● The Pack is an association called and aggregation
– An aggregation is a group of objects that have an existence outside the

object

– If the Pack goes away, the individual wolves do not

● Another type of group association is called a composition
– A composition consist of objects that do go away if the object does.

– For example, a Wolf may be a composition of body parts
● A wolf has a leg, but the leg is part of the wolf

● As with all associations, the type of association depends on the
model.
– Theoretically a wolf leg could be transplanted to another wolf, but our model

is about hunting and packs, not surgery
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UML descriptions of relationships
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UML Relationship Symbols

● Generalization
– Represented by

Inheritance in Java

– Arrow points to
superclass

– Base of arrow on
subclass

Generalization

Association

Aggregation

Composition
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UML Association

● The arrow on the uni-directional association points to the class
to the object of the association
– E.g. Wolf hunts Mouse points to Mouse

● Bi-directory associations have no arrows
– E.g. Territory has Regions and Region as Territories

● Cardinality is designated either by an integer or a range of
integer
– The integer represents that a particular number of objects is required

for the association

– The range indicates that any number of objects within the range may
be required.
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Cardinality Examples

● Integers
– One Pack holds one Territory

● Ranges
– Between 2 and any number of Wolves for a Pack

– A Wolf hunts between 0 and any number of Mice

– A Pack hunts between 0 and any number of Deer

– A Territory has between 0 and any number of Regions and
vice versa

– A Wolf marks between 0 and any number of Territories
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UML Aggregation

● The Pack is an aggregation of Wolves

● The open diamond on the Aggregation points to
the  aggregation
– E.g., forms is an aggregation

– Between 2 and any number of wolves aggregate
into a Pack

– We do not call a single wolf a pack
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Aggregation vs Composition

● Aggregation is weaker than composition

● Objects in a composition have no existence
outside the composition

● For example
– A Car is a composition of body, wheels, engine …

– A Pond may hold an aggregation of ducks.
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Wolf Model

Wolf Pack

Mouse

Deerforms hunts

hunts
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Deer

Region
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