Object Oriented Programming

Week 3 Part 3
Polymorphism



Lecture

 What is Polymorphism
e Examples of Polymorphism

Week 3



What is Polymorphism?

Week 3



Polymorphism

 Polymorphism lets programs use the same
name for different functions.

— It comes from the Greek poly (many) morph (form)

- The name was adapted from biology where it
means the same animal with different forms

Week 3



Types of Polymorphism

 There are three types of Polymorphism

- Ad Hoc Polymorphism: the meaning of the
function Is determined by the type of a functions
parameters and its return type.

- Sub-typing Polymorphism: the meaning of the
function Is determined by the type of the object on
which is Is called

- Parametric Polymorphism: writing a function or
method generically so it can manage different types.

e These are called Generic and will be dealt with later.

Week 3



Ad Hoc Polymorphism

e The simplest type of Polymorphism determines
the behavior of a function or operator based on

Its operands

- E.g. Addition of ints in the sum of the two values;
additions of two strings is their concatenation

PY 1 + 2 —— 3’ uln + u2n —— u12n

- We may use the same method name for different
functions if the parameters are different.

- We may use this do provide different Constructors:

public Dog(String food) { public Dog() {
super{ food): super({ "Meat");
} }

Week 3



Sub-type Polymorphism

Subclasses inherit methods, which will behave
the same way regardless of the subclass.

Subclasses may override methods, which
causes them to behave differently.

The behavior is determined by the type.
We have seen this in our Test file.

Week 3



Sub-type Polymorphism: Test

package animals;
public class Test {

public static wvoid main{String[] args) {
Animal a = new Animal{"Food");
Mammal m = new Mammal{"Milk");
Dog d = new Dog("Meat");
Bird b = new Bird{"Food");
Crow ¢ = new Crow("Seeds");

System.out.println("Animals eat " + a.getFood());
System.out.println{a.says());

System.out.println{"Mammals eat " 4+ m.getFood());
System.out.println{"Mammal young are " + m.getOffspring());
System.out.println{m.says{)});

System.out.println("Dogs eat " + d.getFood(});
System.out.println{"Dog young are " + d.getOffspring());
System.out.println(d.says());

System.out.println{"Birds eat " + b.getFood(});
System.out.println("Bird young are " + b.getOffspring());
System.out.println(b.says());

System.out.println{"Crows eat " + c.getFood());
System.out.println("Crow young are " + c.getOffspring());
System.out.printlnlc.says{));

Week 3 8



Test Output

Animals eat Food

Animals say many different things
Mammals eat Milk

Mammal wyoung are Live

Mammals say many different things
Dogs eat Meat

Dog young are Live

Dog goes woof

Birds eat Food

Bird young are Eggs

Bird says tweet

Crows eat Seeds

Crow young are Eggs

Crow goes caw

Each of the says() method produces a different output based on the type for which
it is a method.

Week 3 9



Subtype Polymorphism without vars

e This Is not that different from ad hoc polymorphism

— You could think of the variables against which the method
IS being called as another parameters

 However, you do not need to have a variable of that
type.

— Subclasses can be assigned to arrays of its superclass

— The type of the object in the array determines the action
of the method, not the type of the list

Week 3 10



Advanced Subtype Polymorphism

package animals;
public class PolymorphismDemo {
private Animal animallist[] = new Animal[1@];

public PolymorphismDemo() {

animallist[@] = new Animal({"Food");
animallist[1] = new Mammal{"Food");
animallist[2] = new Dog{"Meat");

animallist[3] = new Bird("Worms");
animallist[4] = new Crow("Seeds");

}

public Animal[] getAnimallist() {
return animallist;

}
public static void main(String args[]) {

PolymorphismbDemo p = new PolymorphismDemo();

for (int 1 = @; 1 <« 5; 1 ++) {
System.out.println{p.getAnimallist{)[1].says(});
System.out.println("");;

Week 3



PolymorphismDemo Output

Animals say many different things
Mammals say many different things
Dog goes woof

Bird says tweet

Crow goes caw

Each element of the list calls the appropriate says() method.

Week 3

12



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

