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The Object Oriented Languages and Paradigm
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Object Oriented Languages

● Object Oriented Programming is a Programming
Paradigm
– Java is one example of an Object Oriented Language

● Other Object Oriented Programming Languages
– Smalltalk: the first OO language

– JavaScript: Web oriented OO language

– CLOS: OO extension for Lisp

– C++: OO extension for C

– Many more
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Object Oriented Paradigm

● Think of real-world things and their interactions.
– Objects contain

● Properties: i.e., data
● Behaviors: i.e., methods (similar to functions)

● Relationships between things
– A thing may have distinct parts

● E.g., A airplane has wings and a motor

– A thing may be a kind of thing
● An airplane is a kind of vehicle
● A jet airplane is a kind of airplane



Week 1 6

Why OOP

● You can use intuitions about the real world.
– E.g., an airplane flies, a train does not.

● You can make object to take action

● The same action may be different for different objects
– e.g. airplane.board(); train.board()

● Objects inherit traits from more abstract objects
– E.g., vehicle.num_seats → train.num_seats;

airplane.num_seats

● Information can be hidden
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Abstraction
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Data vs Process Abstraction

● Process abstraction
– Sub-programs and functions

● Data abstraction
– Types (e.g. 1 + 2 != 1.0 + 2.0)

– Data abstractions hides implementation differences
between integer addition and floating point addition

● OOP lets programmers do the same
– Plane.board() != Train.board()
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Data Abstraction Advantages

● Interface is independent of implementation
– You ask an object to do something; you need not

tell it how to do it

● Implementation is hidden from user
– The implementation of an object's behavior can

change as long as the behavior remains the same
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Abstract Data Types

● An abstract data type defines behavior
– E.g. integer division drops remainder; floating point

division encode remainder as decimal part

● OOP lets you define new types
– E.g. Stack s;

● Allows: s.empty(); s.push(); s.pop(), s.top()

– Implementation is hidden
● Stack may be implemented as array, linked list, ...
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Abstract Data Type in C++

● Based on C structs and typedef

● Called a class
– C++ classes contain functions as well as data

– Function in classes are called member functions

– Each instance of a class has its own data members

● Information hiding
– Members may be

● Private: only object functions may access them
● Public: other functions may access them
● Protected: only sub-class may access them
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The Object Oriented Languages and Paradigm
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Member Functions Defined in
Class

class Stack {
private:

int *stackPtr, maxLen, topPtr;
public:

Stack() { // a constructor
stackPtr = new int [100];
maxLen = 99; topPtr = -1; };

~Stack () {delete [] stackPtr;};
void push (int num) {…};
void pop () {…};
int top () {…};
int empty () {…};

}
Implicitly inlined  code
placed in caller’s code
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Language Examples: C++ (cont.)

● Constructors:
– Functions to initialize the data members of

instances (they do not create the objects)
– May also allocate storage if part of the object is

heap-dynamic
– Can include parameters to provide

parameterization of the objects
– Implicitly called when an instance is created
– Can be explicitly called
– Name is the same as the class name
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Language Examples: C++ (cont.)

● Destructors
– Functions to clean up after an instance is

destroyed; usually just to reclaim heap storage
– Implicitly called when the object’s lifetime ends
– Can be explicitly called
– Name is the class name, preceded by a tilde (~)

● Friend functions or classes: to allow access to
private members to some unrelated units or
functions (see Section 11.6.4)
– Necessary in C++
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Uses of the Stack Class

void main()
{
int topOne;
Stack stk; //create an instance of

the Stack class
stk.push(42); // c.f., stk += 42
stk.push(17);
topOne = stk.top(); // c.f., &stk
stk.pop();
...

}
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Member Func. Defined Separately

// Stack.h - header file for Stack class
class Stack {
  private:
    int *stackPtr, maxLen, topPtr;
  public:
    Stack(); //** A constructor
    ~Stack(); //** A destructor
    void push(int);
    void pop();
    int top();
    int empty();
}
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Member Func. Defined Separately

// Stack.cpp - implementation for Stack
#include <iostream.h>
#include "Stack.h"
using std::cout;
Stack::Stack() { //** A constructor
  stackPtr = new int [100];
  maxLen = 99;   topPtr = -1;}
Stack::~Stack() {delete[] stackPtr;};
void Stack::push(int number) {
  if (topPtr == maxLen)
  cerr << "Error in push--stack is full\n";
  else stackPtr[++topPtr] = number;}
...
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Abstract Data Types in Java

● Similar to C++, except:
– All user-defined types are classes

● All objects are allocated from the heap and accessed
through reference variables

– Methods must be defined completely in a class
 an abstract data type in Java is defined and
declared in a single syntactic unit

– Individual entities in classes have access control
modifiers (private or public), rather than clauses

– No destructor  implicit garbage collection
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An Example in Java

class StackClass {
private int [] stackRef;
private int maxLen, topIndex;
public StackClass() { // a constructor

stackRef = new int [100];
maxLen = 99; topPtr = -1;};

public void push (int num) {…};
public void pop () {…};
public int top () {…};
public boolean empty () {…};

}
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An Example in Java

public class TstStack {
public static void main(String[] args) {

StackClass myStack = new StackClass();
myStack.push(42);
myStack.push(29);
System.out.println(“:“+myStack.top());
myStack.pop();
myStack.empty();

}
}
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“Hello World!” Compared

(http://en.wikibooks.org/wiki/Hello_world_program)

   C
#include <stdio.h>
int main(void){
  print("Hello world!");
}

   C++
#include <iostream>
using namespace std;
int main(){
  cout<<"Hello World!"<<endl;
}

   Java
public class HelloWorld {
  public static void 

main(String[] args){
    System.out.println

("Hello world!");
  }
}

   Ruby
puts 'Hello, world!'
or
class String
     def say
         puts self
     end
end
'Hello, world!'.say
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Outline

● The Concept of Abstraction (Sec. 11.1)
● Introduction to Data Abstraction (Sec. 11.2)
● Design Issues (Sec. 11.3)
● Language Examples (Sec. 11.4)
● Parameterized Abstract Data Types (Sec.

11.5)
● Encapsulation Constructs (Sec. 11.6)
● Naming Encapsulations (Sec. 11.7)
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Parameterized ADTs

● Parameterized abstract data types allow
designing an ADT that can store any type
elements (among other things): only an issue
for static typed languages

● Also known as generic classes
● C++, Ada, Java 5.0, and C# 2005 provide

support for parameterized ADTs
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Parameterized ADTs in C++

● Make Stack class generic in stack size by writing
parameterized constructor function
class Stack {
 ...

   Stack (int size) {
    stk_ptr = new int [size];
    max_len = size - 1;  top = -1; };
  ...

  }

  Stack stk(150);
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Parameterized ADTs in C++ (cont.)

● Parameterize element type by templated class
template <class Type>
class Stack {
  private:
    Type *stackPtr;
    int maxLen, topPtr;
  public:
    Stack(int size) {
      stackPtr = new Type[size];
      maxLen = size-1;  topPtr = -1; }
  ...
Stack<double> stk(150);

Instantiated by compiler
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Outline

● The Concept of Abstraction (Sec. 11.1)
● Introduction to Data Abstraction (Sec. 11.2)
● Design Issues (Sec. 11.3)
● Language Examples (Sec. 11.4)
● Parameterized Abstract Data Types (Sec.

11.5)
● Encapsulation Constructs (Sec. 11.6)
● Naming Encapsulations (Sec. 11.7)
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Generalized Encapsulation

● Enclosure for an abstract data type defines a
SINGLE data type and its operations

● How about defining a more generalized
encapsulation construct that can define any
number of entries/types, any of which can be
selectively specified to be visible outside the
enclosing unit
– Abstract data type is thus a special case
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Encapsulation Constructs

● Large programs have two special needs:
– Some means of organization, other than simply

division into subprograms
– Some means of partial compilation (compilation

units that are smaller than the whole program)
● Obvious solution: a grouping of logically

related code and data into a unit that can be
separately compiled (compilation units)

● Such collections are called encapsulation
– Example: libraries
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Means of Encapsulation: Nested
Subprograms

● Organizing programs by nesting subprogram
definitions inside the logically larger
subprograms that use them

● Nested subprograms are supported in Ada,
Fortran 95, Python, and Ruby
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Encapsulation in C

● Files containing one or more subprograms can
be independently compiled

● The interface is placed in a header file
● Problem: 

– The linker does not check types between a header
and associated implementation

● #include preprocessor specification:
– Used to include header files in client programs to

reference to compiled version of implementation
file, which is linked as libraries
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Encapsulation in C++

● Can define header and code files, similar to those
of C

● Or, classes can be used for encapsulation
– The class header file has only the prototypes of the

member functions
– The member definitions are defined in a separate file

 Separate interface from implementation
● Friends provide a way to grant access to private

members of a class
– Example: vector object multiplied by matrix object
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Friend Functions in C++

class Matrix;
class Vector {
friend Vector multiply(const Matrix&,

 const Vector&);
...  }

class Matrix {
friend Vector multiply(const Matrix&,

 const Vector&);
...  }

Vector multiply(const Matrix& ml, 
const Vector& vl) {

... }
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Naming Encapsulations

● Encapsulation discussed so far is to provide a
way to organize programs into logical units for
separate compilation

● On the other hand, large programs define
many global names; need a way to avoid
name conflicts in libraries and client programs
developed by different programmers

● A naming encapsulation is used to create a
new scope for names
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Naming Encapsulations (cont.)

● C++ namespaces
– Can place each library in its own namespace and

qualify names used outside with the namespace
namespace MyStack {
... // stack declarations
}

– Can be referenced in three ways:
MyStack::topPtr
using MyStack::topPtr;p = topPtr;
using namespace MyStack; p = topPtr;

– C# also includes namespaces
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Naming Encapsulations (cont.)

● Java Packages
– Packages can contain more than one class

definition; classes in a package are partial friends
– Clients of a package can use fully qualified name,

e.g., myStack.topPtr, or use import 
declaration, e.g., import myStack.*;

● Ada Packages
– Packages are defined in hierarchies which

correspond to file hierarchies
– Visibility from a program unit is gained with the
with clause
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Naming Encapsulations (cont.)

● Ruby classes are name encapsulations, but
Ruby also has modules

● Module:
– Encapsulate libraries of related constants and

methods, whose names in a separate namespace
– Unlike classes  cannot be instantiated or

subclassed, and they cannot define variables
– Methods defined in a module must include the

module’s name
– Access to the contents of a module is requested

with the require method
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Ruby Modules

module MyStuff
PI = 3.1415
def MyStuff.mymethod1(p1)
...
end
def MyStuff.mymethod(p2)
...
end

end
Require ‘myStuffMod’
myStuff.mymethod1(x)
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Summary

● Concept of ADTs and the use in program design was
a milestone in languages development
– Two primary features are packaging of data with their

associated operations and information hiding
● C++ data abstraction is provided by classes
● Java’s data abstraction is similar to C++
● Ada, C++, Java 5.0, and C# 2005 support

parameterized ADTs
● C++, C#, Java, Ada, and Ruby provide naming

encapsulations
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