
Object Oriented Programming

Week 1 Part 1
Data Abstraction and Encapsulation

Lecture

● Object Orient Languages and Paradigm

● Abstraction

● Design Issues

● Language Examples

● Parameterized Abstract Data Types

● Encapsulation

Week 1 3

The Object Oriented Languages and Paradigm

Week 1 4

Object Oriented Languages

● Object Oriented Programming is a Programming
Paradigm
– Java is one example of an Object Oriented Language

● Other Object Oriented Programming Languages
– Smalltalk: the first OO language

– JavaScript: Web oriented OO language

– CLOS: OO extension for Lisp

– C++: OO extension for C

– Many more

Week 1 5

Object Oriented Paradigm

● Think of real-world things and their interactions.
– Objects contain

● Properties: i.e., data
● Behaviors: i.e., methods (similar to functions)

● Relationships between things
– A thing may have distinct parts

● E.g., A airplane has wings and a motor

– A thing may be a kind of thing
● An airplane is a kind of vehicle
● A jet airplane is a kind of airplane

Week 1 6

Why OOP

● You can use intuitions about the real world.
– E.g., an airplane flies, a train does not.

● You can make object to take action

● The same action may be different for different objects
– e.g. airplane.board(); train.board()

● Objects inherit traits from more abstract objects
– E.g., vehicle.num_seats → train.num_seats;

airplane.num_seats

● Information can be hidden

Week 1 7

Abstraction

Week 1 8

Data vs Process Abstraction

● Process abstraction
– Sub-programs and functions

● Data abstraction
– Types (e.g. 1 + 2 != 1.0 + 2.0)

– Data abstractions hides implementation differences
between integer addition and floating point addition

● OOP lets programmers do the same
– Plane.board() != Train.board()

Week 1 9

Data Abstraction Advantages

● Interface is independent of implementation
– You ask an object to do something; you need not

tell it how to do it

● Implementation is hidden from user
– The implementation of an object's behavior can

change as long as the behavior remains the same

Week 1 10

Abstract Data Types

● An abstract data type defines behavior
– E.g. integer division drops remainder; floating point

division encode remainder as decimal part

● OOP lets you define new types
– E.g. Stack s;

● Allows: s.empty(); s.push(); s.pop(), s.top()

– Implementation is hidden
● Stack may be implemented as array, linked list, ...

Week 1 11

Abstract Data Type in C++

● Based on C structs and typedef

● Called a class
– C++ classes contain functions as well as data

– Function in classes are called member functions

– Each instance of a class has its own data members

● Information hiding
– Members may be

● Private: only object functions may access them
● Public: other functions may access them
● Protected: only sub-class may access them

Week 1 12

The Object Oriented Languages and Paradigm

 13

Member Functions Defined in
Class

class Stack {
private:

int *stackPtr, maxLen, topPtr;
public:

Stack() { // a constructor
stackPtr = new int [100];
maxLen = 99; topPtr = -1; };

~Stack () {delete [] stackPtr;};
void push (int num) {…};
void pop () {…};
int top () {…};
int empty () {…};

}
Implicitly inlined  code
placed in caller’s code

 14

Language Examples: C++ (cont.)

● Constructors:
– Functions to initialize the data members of

instances (they do not create the objects)
– May also allocate storage if part of the object is

heap-dynamic
– Can include parameters to provide

parameterization of the objects
– Implicitly called when an instance is created
– Can be explicitly called
– Name is the same as the class name

 15

Language Examples: C++ (cont.)

● Destructors
– Functions to clean up after an instance is

destroyed; usually just to reclaim heap storage
– Implicitly called when the object’s lifetime ends
– Can be explicitly called
– Name is the class name, preceded by a tilde (~)

● Friend functions or classes: to allow access to
private members to some unrelated units or
functions (see Section 11.6.4)
– Necessary in C++

 16

Uses of the Stack Class

void main()
{
int topOne;
Stack stk; //create an instance of

the Stack class
stk.push(42); // c.f., stk += 42
stk.push(17);
topOne = stk.top(); // c.f., &stk
stk.pop();
...

}

 17

Member Func. Defined Separately

// Stack.h - header file for Stack class
class Stack {
 private:
 int *stackPtr, maxLen, topPtr;
 public:
 Stack(); //** A constructor
 ~Stack(); //** A destructor
 void push(int);
 void pop();
 int top();
 int empty();
}

 18

Member Func. Defined Separately

// Stack.cpp - implementation for Stack
#include <iostream.h>
#include "Stack.h"
using std::cout;
Stack::Stack() { //** A constructor
 stackPtr = new int [100];
 maxLen = 99; topPtr = -1;}
Stack::~Stack() {delete[] stackPtr;};
void Stack::push(int number) {
 if (topPtr == maxLen)
 cerr << "Error in push--stack is full\n";
 else stackPtr[++topPtr] = number;}
...

 19

Abstract Data Types in Java

● Similar to C++, except:
– All user-defined types are classes

● All objects are allocated from the heap and accessed
through reference variables

– Methods must be defined completely in a class
 an abstract data type in Java is defined and
declared in a single syntactic unit

– Individual entities in classes have access control
modifiers (private or public), rather than clauses

– No destructor  implicit garbage collection

 20

An Example in Java

class StackClass {
private int [] stackRef;
private int maxLen, topIndex;
public StackClass() { // a constructor

stackRef = new int [100];
maxLen = 99; topPtr = -1;};

public void push (int num) {…};
public void pop () {…};
public int top () {…};
public boolean empty () {…};

}

 21

An Example in Java

public class TstStack {
public static void main(String[] args) {

StackClass myStack = new StackClass();
myStack.push(42);
myStack.push(29);
System.out.println(“:“+myStack.top());
myStack.pop();
myStack.empty();

}
}

 22

“Hello World!” Compared

(http://en.wikibooks.org/wiki/Hello_world_program)

 C
#include <stdio.h>
int main(void){
 print("Hello world!");
}

 C++
#include <iostream>
using namespace std;
int main(){
 cout<<"Hello World!"<<endl;
}

 Java
public class HelloWorld {
 public static void

main(String[] args){
 System.out.println

("Hello world!");
 }
}

 Ruby
puts 'Hello, world!'
or
class String
 def say
 puts self
 end
end
'Hello, world!'.say

 23

Outline

● The Concept of Abstraction (Sec. 11.1)
● Introduction to Data Abstraction (Sec. 11.2)
● Design Issues (Sec. 11.3)
● Language Examples (Sec. 11.4)
● Parameterized Abstract Data Types (Sec.

11.5)
● Encapsulation Constructs (Sec. 11.6)
● Naming Encapsulations (Sec. 11.7)

 24

Parameterized ADTs

● Parameterized abstract data types allow
designing an ADT that can store any type
elements (among other things): only an issue
for static typed languages

● Also known as generic classes
● C++, Ada, Java 5.0, and C# 2005 provide

support for parameterized ADTs

 25

Parameterized ADTs in C++

● Make Stack class generic in stack size by writing
parameterized constructor function
class Stack {
 ...

 Stack (int size) {
 stk_ptr = new int [size];
 max_len = size - 1; top = -1; };
 ...

 }

 Stack stk(150);

 26

Parameterized ADTs in C++ (cont.)

● Parameterize element type by templated class
template <class Type>
class Stack {
 private:
 Type *stackPtr;
 int maxLen, topPtr;
 public:
 Stack(int size) {
 stackPtr = new Type[size];
 maxLen = size-1; topPtr = -1; }
 ...
Stack<double> stk(150);

Instantiated by compiler

 27

Outline

● The Concept of Abstraction (Sec. 11.1)
● Introduction to Data Abstraction (Sec. 11.2)
● Design Issues (Sec. 11.3)
● Language Examples (Sec. 11.4)
● Parameterized Abstract Data Types (Sec.

11.5)
● Encapsulation Constructs (Sec. 11.6)
● Naming Encapsulations (Sec. 11.7)

 28

Generalized Encapsulation

● Enclosure for an abstract data type defines a
SINGLE data type and its operations

● How about defining a more generalized
encapsulation construct that can define any
number of entries/types, any of which can be
selectively specified to be visible outside the
enclosing unit
– Abstract data type is thus a special case

 29

Encapsulation Constructs

● Large programs have two special needs:
– Some means of organization, other than simply

division into subprograms
– Some means of partial compilation (compilation

units that are smaller than the whole program)
● Obvious solution: a grouping of logically

related code and data into a unit that can be
separately compiled (compilation units)

● Such collections are called encapsulation
– Example: libraries

 30

Means of Encapsulation: Nested
Subprograms

● Organizing programs by nesting subprogram
definitions inside the logically larger
subprograms that use them

● Nested subprograms are supported in Ada,
Fortran 95, Python, and Ruby

 31

Encapsulation in C

● Files containing one or more subprograms can
be independently compiled

● The interface is placed in a header file
● Problem:

– The linker does not check types between a header
and associated implementation

● #include preprocessor specification:
– Used to include header files in client programs to

reference to compiled version of implementation
file, which is linked as libraries

 32

Encapsulation in C++

● Can define header and code files, similar to those
of C

● Or, classes can be used for encapsulation
– The class header file has only the prototypes of the

member functions
– The member definitions are defined in a separate file

 Separate interface from implementation
● Friends provide a way to grant access to private

members of a class
– Example: vector object multiplied by matrix object

 33

Friend Functions in C++

class Matrix;
class Vector {
friend Vector multiply(const Matrix&,

 const Vector&);
... }

class Matrix {
friend Vector multiply(const Matrix&,

 const Vector&);
... }

Vector multiply(const Matrix& ml,
const Vector& vl) {

... }

 34

Naming Encapsulations

● Encapsulation discussed so far is to provide a
way to organize programs into logical units for
separate compilation

● On the other hand, large programs define
many global names; need a way to avoid
name conflicts in libraries and client programs
developed by different programmers

● A naming encapsulation is used to create a
new scope for names

 35

Naming Encapsulations (cont.)

● C++ namespaces
– Can place each library in its own namespace and

qualify names used outside with the namespace
namespace MyStack {
... // stack declarations
}

– Can be referenced in three ways:
MyStack::topPtr
using MyStack::topPtr;p = topPtr;
using namespace MyStack; p = topPtr;

– C# also includes namespaces

 36

Naming Encapsulations (cont.)

● Java Packages
– Packages can contain more than one class

definition; classes in a package are partial friends
– Clients of a package can use fully qualified name,

e.g., myStack.topPtr, or use import
declaration, e.g., import myStack.*;

● Ada Packages
– Packages are defined in hierarchies which

correspond to file hierarchies
– Visibility from a program unit is gained with the
with clause

 37

Naming Encapsulations (cont.)

● Ruby classes are name encapsulations, but
Ruby also has modules

● Module:
– Encapsulate libraries of related constants and

methods, whose names in a separate namespace
– Unlike classes  cannot be instantiated or

subclassed, and they cannot define variables
– Methods defined in a module must include the

module’s name
– Access to the contents of a module is requested

with the require method

 38

Ruby Modules

module MyStuff
PI = 3.1415
def MyStuff.mymethod1(p1)
...
end
def MyStuff.mymethod(p2)
...
end

end
Require ‘myStuffMod’
myStuff.mymethod1(x)

 39

Summary

● Concept of ADTs and the use in program design was
a milestone in languages development
– Two primary features are packaging of data with their

associated operations and information hiding
● C++ data abstraction is provided by classes
● Java’s data abstraction is similar to C++
● Ada, C++, Java 5.0, and C# 2005 support

parameterized ADTs
● C++, C#, Java, Ada, and Ruby provide naming

encapsulations

Week 1 40

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

