
Object Oriented Programming

Week 1 Part 3
Writing Java with Eclipse and JUnit



Today's Lecture

● Test Driven Development Review (TDD)

● Building up a class using TDD



Week 1 3

Adding a Class using Test Driven Development in
Eclipse



Week 1 4

Test Driven Development

1.Write a test

2.See test fail

3.Write code

4.See test succeed

5.Refactor code



Week 1 5

Add a test to the test case

Test the constructor
● @Test pragma needed
● Method begins with “test”



Week 1 6

Eclipse Shortcuts (Ctrl-<space>)

● Control-<space> adds code
● E.g., If you type new Control-space, it offers to add a

new object
● If you select “Create object” it will put in the code “type name =

new type();
● You fill in the type, and it puts the same type in as the

constructor
● You fill in the name
● You can add parameters to the constructor



Week 1 7

Add the constructor

Create the constructor
● Type “new”
● Hit Ctrl-<space>
● Select “create new object”



Week 1 8

Eclipse Shortcuts (Ctrl-1)

● Control-1 suggests solutions to compiler errors
● It will offer to add a constructor when one does not

exist
● It takes to the the file in which the class is defined and

puts in a template for the constructor
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Fix Compiler Error: no Constructor

On the line with the error
● Hit Ctrl-1
● Select “Create Constructor”



Week 1 10

Add Constructor

When you select
          Create Constructor
● Opens class file for object
● Adds function definition for 

      Constructor
● You can tab through to 

       change fields



Week 1 11

Eclipse TODO

● Eclipse keeps track of all of the lines that start
with TODO
● You can use this work to note places you are working
● Eclipse puts them in automatically when it adds a

function prototype for you.
● E.g., It adds one when you add your constructor function



Week 1 12

Added Constructor w/ TODO

Double click tab to
see other windows

Click tasks to see
TODO list



Week 1 13

Add the Constructor Body

● The constructor for our point will put in the initial
values for the x and y positions of the point.
– That is this.x = x; and this.y = y;

● The expression this.x refers to the instance variable x.
● The expression x refers to the parameter.



Week 1 14

Add Constructor Body

Compiler errors

TODO is gone



Week 1 15

Ctrl-1 to add x field



Week 1 16

Ctrl-1 again to add y field
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Run JUnit Test

● Double click “TestPoint”
● Select “Run As”
● Choose “JUnit Test”



Week 1 18

Oops! Test Passes

Green when 
test passes



Week 1 19

Need a failing test

● To add new code, we need a failing test.

● Making sure the test fails before we add code
ensures that the test is working
– If it succeeds before we add code, no code needs

to be added

● Here we can test that the instance variables are
set correctly.



Week 1 20

Checking Instance Variable

● Instance variables are always private
– They are set by setter methods

– They are read by getter methods

● Instance variables are private to keep other
classes from manipulating the variables directly
– It allow the class to change the variables while

maintaining the interface through the method.

● Fortunately Eclipse will write them for you.
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Adding getter methods

1.Right click Point
2.Choose “Source”
3.Select “Generate

   Getters and Setters”



Week 1 22

Generate only getters

1.Click the black triangle
2.Select getX and get Y



Week 1 23

Getters are added to Class

Getters
● getX
● getY



Week 1 24

Testing Variable Values

<obj>.<method>()
p.getX()

AssertEquals
● Succeeds when 

Parameters equal
● Parameters

● Expected
● Actual



Week 1 25

Oops, Still Passes



Week 1 26

Lets try another test

● Define a function that will move a point to a new
location

● It will take two parameters defining the new
location of the point



Week 1 27

Add the test first

Create a new Point
Check values

Move the Point
Check values



Week 1 28

Fix the compiler error

Ctrl-1 for suggestions
Add move(int, int)



Week 1 29

Run the test; It fails

testMove fails

Expected <4>
But was <2>



Week 1 30

Fix the code



Week 1 31

Now it works



Week 1 32

Recap

● We created a Java project

● We added a Class to the project (Point)

● We added a test folder to the project

● We added a Test Case to the test folder (TestPoint)

● We added a test of the Constructor to the test folder.

● We build up the Constructor by correcting compiler
errors

● We build a move method by correcting a failing test



Week 1 33

Using a Java Object



Week 1 34

Using an Object

● Make the object available by importing it's
package.
– Objects are defined in packages to avoid name

collision.

– Our Point is different from other points.

● Create the object using the constructor function

● Call the object's methods by giving the object
and the method.



Week 1 35

Using Point

● We have created a class called Point.
– It has an x and y position

● To use the point we can
– Create a new Point object, which sets x and y

● E.g., Point p = new Point(2, 3);

– Retrieve x and y
● E.g., int x = p.getX();

– Move the Point by changing x and y 
● E.g., p.move(5, 6);



Week 1 36

Running a Class

● A Class is not a program, it is a way of creating
kinds of objects

● You can turn a Class into a program by adding
a main() function.
– As in C, the main() function is the starting place for

the program.



Week 1 37

Testing a Program

● When building a class, we use unit testing
– Unit testing tests the class

– Unit testing checks the class for the programmer

● When testing a program, we use system testing
– System testing tests the entire program

– System testing is also called end-to-end testing

– System testing checks that the program does what
the user wants



Week 1 38

System Testing

● In system testing, we need input and output.

● We will create a point then print it out.



Week 1 39

Output

● In java, we can print using System.out.println()
– System is the name of a class that is included by

default

– The instance variable “out” is a in System.

– The method println() is a method defined on out,
which takes a single string as a parameter.



Week 1 40

Point gets main() method



Week 1 41

Run the program

1) Double Click on class
2) Select “Run As”
3) Choose Java Application



Week 1 42

Results

Output shows in console



Week 1 43

System.out.println()

● The method System.out.println() prints only
strings
– System.out.println(p) changes p from a Point to a

string using the toString method.

– When you use a Class where a string is needed,
Java implicitly changes it to a string using
toString() 



Week 1 44

toSting()

● Every object has a toString() method defined
for it.
– The method is inherited from the Object class

– The Object class is the basis of all classes in Java

– If we add a method with the same name and
parameters as an inherited method, we override the
inherited method

● That is we redefine the inherited method for our class



Week 1 45

ToString output

● The toString() method that is inherited can only
provide very generic information
– oop.Point@5c647e05

– Prints out the package, class and location
● Not particularly informative; but always available to Java

● We can override toString() to be more useful
– We add the toString() method to the class using TDD



Week 1 46

Add a test

● Create a point and check that toString makes
the right thing.

● There are no compiler errors because it is
calling the inherited method.

● The test documents what it should produce
– i.e., “p(2, 3)” for a point at position 2, 3.



Week 1 47

Run the Test (Fails: Yeah!)

Test Fails

Comparison Failure
Expected p(2, 3)
Was oop.Point@53879e0



Week 1 48

Add the new method



Week 1 49

Run test again (Succeeds!)
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Try running to program again

No change to program

New version of toString



Week 1 51

Inheritance

● In Java classes inherit all of the methods and
instance variables of their super class

● Any class can be a super class
– For example, we could have a RedPoint that

inherits from Point, and is different only in the way it
prints.

● We specify inheritance when we define a class



Week 1 52

Specify Inheritance when Creating
Class

Inherits from
Java.lang.Object

Finish



Week 1 53

Review

● In this lecture we have covered:
– TDD

● To add instance variables
● To add a Constructor
● To add a method

– Writing a main() function

– Redefining inherited function toString
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