
Object Oriented Programming

Week 1 Part 3
Writing Java with Eclipse and JUnit

Today's Lecture

● Test Driven Development Review (TDD)

● Building up a class using TDD

Week 1 3

Adding a Class using Test Driven Development in
Eclipse

Week 1 4

Test Driven Development

1.Write a test

2.See test fail

3.Write code

4.See test succeed

5.Refactor code

Week 1 5

Add a test to the test case

Test the constructor
● @Test pragma needed
● Method begins with “test”

Week 1 6

Eclipse Shortcuts (Ctrl-<space>)

● Control-<space> adds code
● E.g., If you type new Control-space, it offers to add a

new object
● If you select “Create object” it will put in the code “type name =

new type();
● You fill in the type, and it puts the same type in as the

constructor
● You fill in the name
● You can add parameters to the constructor

Week 1 7

Add the constructor

Create the constructor
● Type “new”
● Hit Ctrl-<space>
● Select “create new object”

Week 1 8

Eclipse Shortcuts (Ctrl-1)

● Control-1 suggests solutions to compiler errors
● It will offer to add a constructor when one does not

exist
● It takes to the the file in which the class is defined and

puts in a template for the constructor

Week 1 9

Fix Compiler Error: no Constructor

On the line with the error
● Hit Ctrl-1
● Select “Create Constructor”

Week 1 10

Add Constructor

When you select
 Create Constructor
● Opens class file for object
● Adds function definition for

 Constructor
● You can tab through to

 change fields

Week 1 11

Eclipse TODO

● Eclipse keeps track of all of the lines that start
with TODO
● You can use this work to note places you are working
● Eclipse puts them in automatically when it adds a

function prototype for you.
● E.g., It adds one when you add your constructor function

Week 1 12

Added Constructor w/ TODO

Double click tab to
see other windows

Click tasks to see
TODO list

Week 1 13

Add the Constructor Body

● The constructor for our point will put in the initial
values for the x and y positions of the point.
– That is this.x = x; and this.y = y;

● The expression this.x refers to the instance variable x.
● The expression x refers to the parameter.

Week 1 14

Add Constructor Body

Compiler errors

TODO is gone

Week 1 15

Ctrl-1 to add x field

Week 1 16

Ctrl-1 again to add y field

Week 1 17

Run JUnit Test

● Double click “TestPoint”
● Select “Run As”
● Choose “JUnit Test”

Week 1 18

Oops! Test Passes

Green when
test passes

Week 1 19

Need a failing test

● To add new code, we need a failing test.

● Making sure the test fails before we add code
ensures that the test is working
– If it succeeds before we add code, no code needs

to be added

● Here we can test that the instance variables are
set correctly.

Week 1 20

Checking Instance Variable

● Instance variables are always private
– They are set by setter methods

– They are read by getter methods

● Instance variables are private to keep other
classes from manipulating the variables directly
– It allow the class to change the variables while

maintaining the interface through the method.

● Fortunately Eclipse will write them for you.

Week 1 21

Adding getter methods

1.Right click Point
2.Choose “Source”
3.Select “Generate

 Getters and Setters”

Week 1 22

Generate only getters

1.Click the black triangle
2.Select getX and get Y

Week 1 23

Getters are added to Class

Getters
● getX
● getY

Week 1 24

Testing Variable Values

<obj>.<method>()
p.getX()

AssertEquals
● Succeeds when

Parameters equal
● Parameters

● Expected
● Actual

Week 1 25

Oops, Still Passes

Week 1 26

Lets try another test

● Define a function that will move a point to a new
location

● It will take two parameters defining the new
location of the point

Week 1 27

Add the test first

Create a new Point
Check values

Move the Point
Check values

Week 1 28

Fix the compiler error

Ctrl-1 for suggestions
Add move(int, int)

Week 1 29

Run the test; It fails

testMove fails

Expected <4>
But was <2>

Week 1 30

Fix the code

Week 1 31

Now it works

Week 1 32

Recap

● We created a Java project

● We added a Class to the project (Point)

● We added a test folder to the project

● We added a Test Case to the test folder (TestPoint)

● We added a test of the Constructor to the test folder.

● We build up the Constructor by correcting compiler
errors

● We build a move method by correcting a failing test

Week 1 33

Using a Java Object

Week 1 34

Using an Object

● Make the object available by importing it's
package.
– Objects are defined in packages to avoid name

collision.

– Our Point is different from other points.

● Create the object using the constructor function

● Call the object's methods by giving the object
and the method.

Week 1 35

Using Point

● We have created a class called Point.
– It has an x and y position

● To use the point we can
– Create a new Point object, which sets x and y

● E.g., Point p = new Point(2, 3);

– Retrieve x and y
● E.g., int x = p.getX();

– Move the Point by changing x and y
● E.g., p.move(5, 6);

Week 1 36

Running a Class

● A Class is not a program, it is a way of creating
kinds of objects

● You can turn a Class into a program by adding
a main() function.
– As in C, the main() function is the starting place for

the program.

Week 1 37

Testing a Program

● When building a class, we use unit testing
– Unit testing tests the class

– Unit testing checks the class for the programmer

● When testing a program, we use system testing
– System testing tests the entire program

– System testing is also called end-to-end testing

– System testing checks that the program does what
the user wants

Week 1 38

System Testing

● In system testing, we need input and output.

● We will create a point then print it out.

Week 1 39

Output

● In java, we can print using System.out.println()
– System is the name of a class that is included by

default

– The instance variable “out” is a in System.

– The method println() is a method defined on out,
which takes a single string as a parameter.

Week 1 40

Point gets main() method

Week 1 41

Run the program

1) Double Click on class
2) Select “Run As”
3) Choose Java Application

Week 1 42

Results

Output shows in console

Week 1 43

System.out.println()

● The method System.out.println() prints only
strings
– System.out.println(p) changes p from a Point to a

string using the toString method.

– When you use a Class where a string is needed,
Java implicitly changes it to a string using
toString()

Week 1 44

toSting()

● Every object has a toString() method defined
for it.
– The method is inherited from the Object class

– The Object class is the basis of all classes in Java

– If we add a method with the same name and
parameters as an inherited method, we override the
inherited method

● That is we redefine the inherited method for our class

Week 1 45

ToString output

● The toString() method that is inherited can only
provide very generic information
– oop.Point@5c647e05

– Prints out the package, class and location
● Not particularly informative; but always available to Java

● We can override toString() to be more useful
– We add the toString() method to the class using TDD

Week 1 46

Add a test

● Create a point and check that toString makes
the right thing.

● There are no compiler errors because it is
calling the inherited method.

● The test documents what it should produce
– i.e., “p(2, 3)” for a point at position 2, 3.

Week 1 47

Run the Test (Fails: Yeah!)

Test Fails

Comparison Failure
Expected p(2, 3)
Was oop.Point@53879e0

Week 1 48

Add the new method

Week 1 49

Run test again (Succeeds!)

Week 1 50

Try running to program again

No change to program

New version of toString

Week 1 51

Inheritance

● In Java classes inherit all of the methods and
instance variables of their super class

● Any class can be a super class
– For example, we could have a RedPoint that

inherits from Point, and is different only in the way it
prints.

● We specify inheritance when we define a class

Week 1 52

Specify Inheritance when Creating
Class

Inherits from
Java.lang.Object

Finish

Week 1 53

Review

● In this lecture we have covered:
– TDD

● To add instance variables
● To add a Constructor
● To add a method

– Writing a main() function

– Redefining inherited function toString

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

